
Mapiu – Mapara Freshwater Monitoring Results Merrin Whatley (PhD) – 27 July 2022

Indicators of freshwater health

- Monitoring results
- On farm actions

Indicators of Freshwater Health

Flow

Wildlife

Habitat

Energy & Nutrient Dynamics

Water Quality

Identifying the drivers of Waterway Health

The key resources/attributes?

Where in the catchment are they coming from?

Are there seasonal changes or changes over time?

What are the underlying processes or practices contributing to contaminant loss?


Tailor catchment-based interventions to target key contaminants over time and space.

Natural Influences

Climate Topography Geology Soils Hydrology Land cover

Map Information

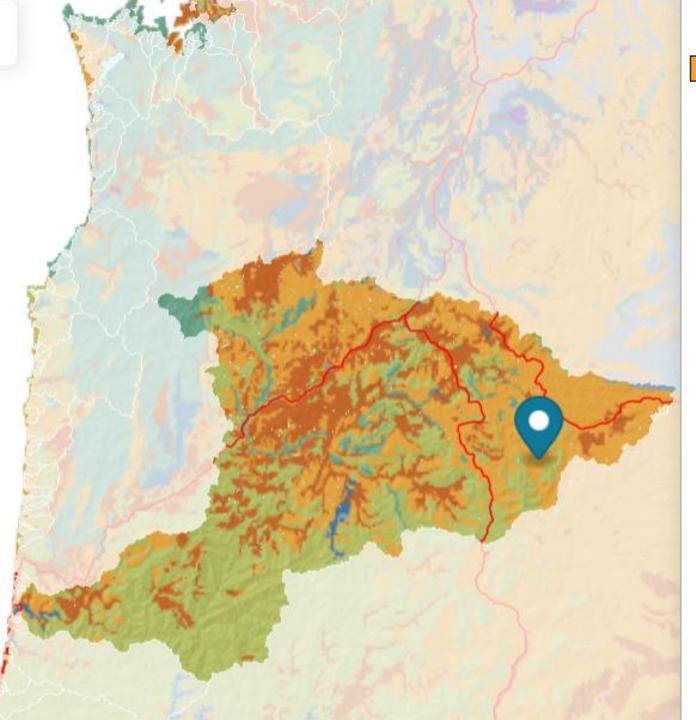
Weak Bedrock

Variants

Overland flow Artificial drainage Natural soil bypass

Not applicable Not applicable Not applicable

Key Information


Hydrological Pathway Lateral drainage Contaminant Risk Sediment, Particulate phosphorus

Surface water catchment

Mokau River

Description

 Typically occurs across rolling to steep topography where shallow soil overlies weak bedrock (also exists across plateaus where shallow soils overlie bedrock without

Map Information

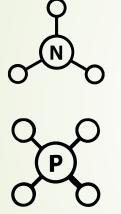
Oxidising Soil & Aquifer

Variants

Overland flow Artificial drainage Natural soil bypass Not applicable Not applicable Not applicable

Key Information

Hydrological PathwayDeep drainageContaminant RiskNitrate nitrogenSurface water catchmentMokau River


Description

- Predominantly occurs in lowland, low relief areas where there are moderately-well to well drained soils and oxygen-rich (oxidising underlying aquifers.
- Runoff risk is elevated in areas of sloping or slowly permeable soils.

Attribute Descriptions

Water Clarity – Suspended Particles Including Sediment

Nitrate

Dissolved Reactive Phosphorus (DRP)

Pathogens/E. coli (short for Escherichia coli)

Freshwater Macroinvertebrate Community Index (MCI)

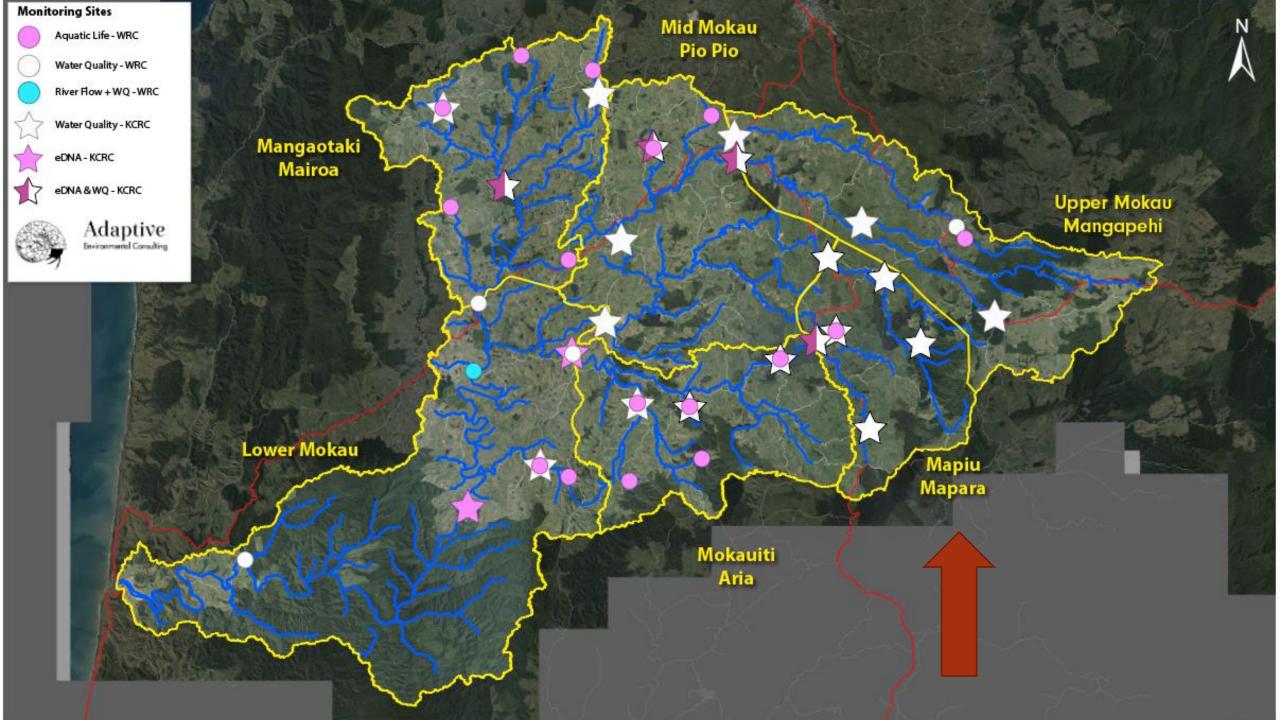
Monitoring in Mapiu-Mapara

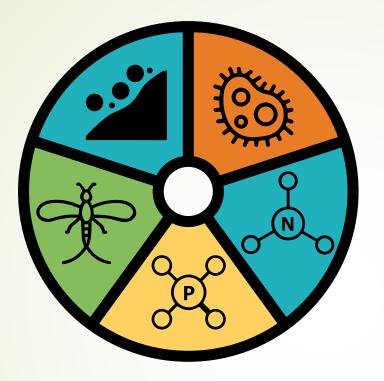
Waikato Regional Council Sites

- Mokau River 22 sites in total
 - 5 River Water Quality Sites
 - 16 Ecological Monitoring Sites
 - 1 River flow Site
- Mapiu-Mapara 1 Ecology site

Frequency of Measurements

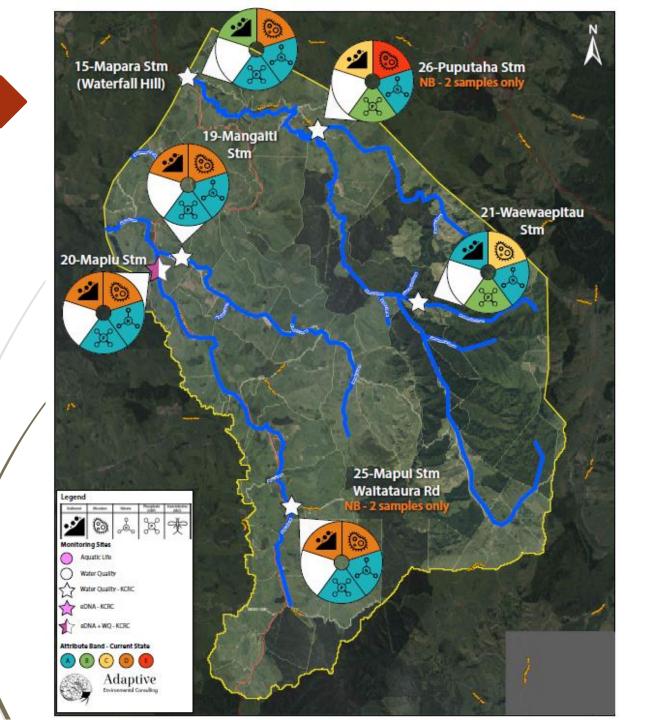
- WQ collected by monthly grab sample
- Ecology site visited every 3 years
- Continuous river flow recorded every 15 minutes


Monitoring in Mapiu-Mapara


KCRC Sites

- Mokau River 22 sites in total
- 20 Water Quality sites
- 6 eDNA sites
- Mapiu-Mapara 6 sites in total
- 6 Water Quality sites
- 1 eDNA site + WQ

Frequency of Measurements

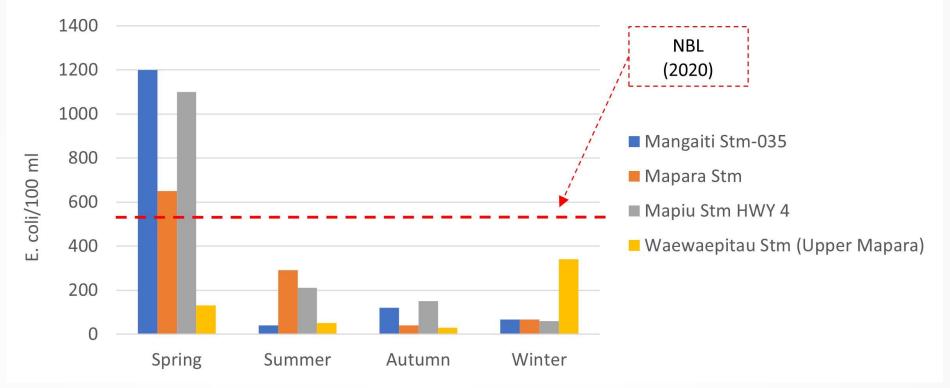

- Water quality collected by grab sample 4 times a year
- eDNA collected twice, 24 Feb & 5 Dec 2021

Attribute Band - Current State

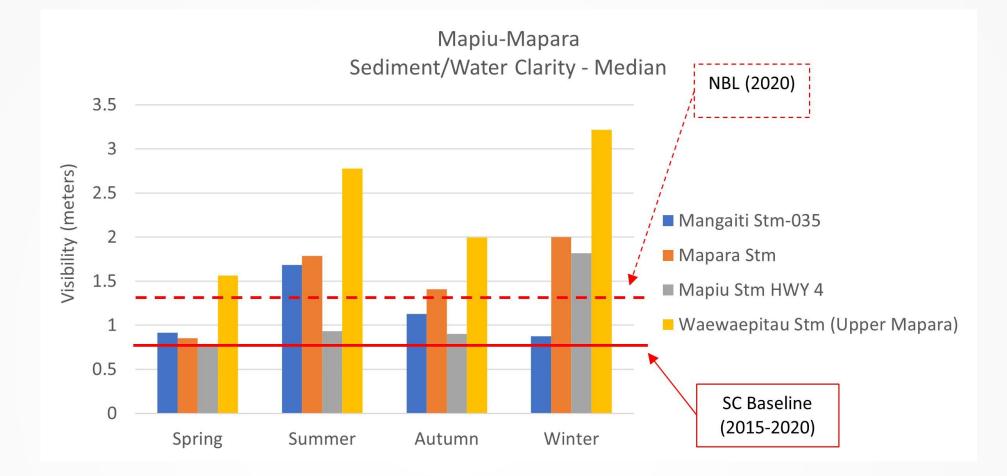
Attribute Dials

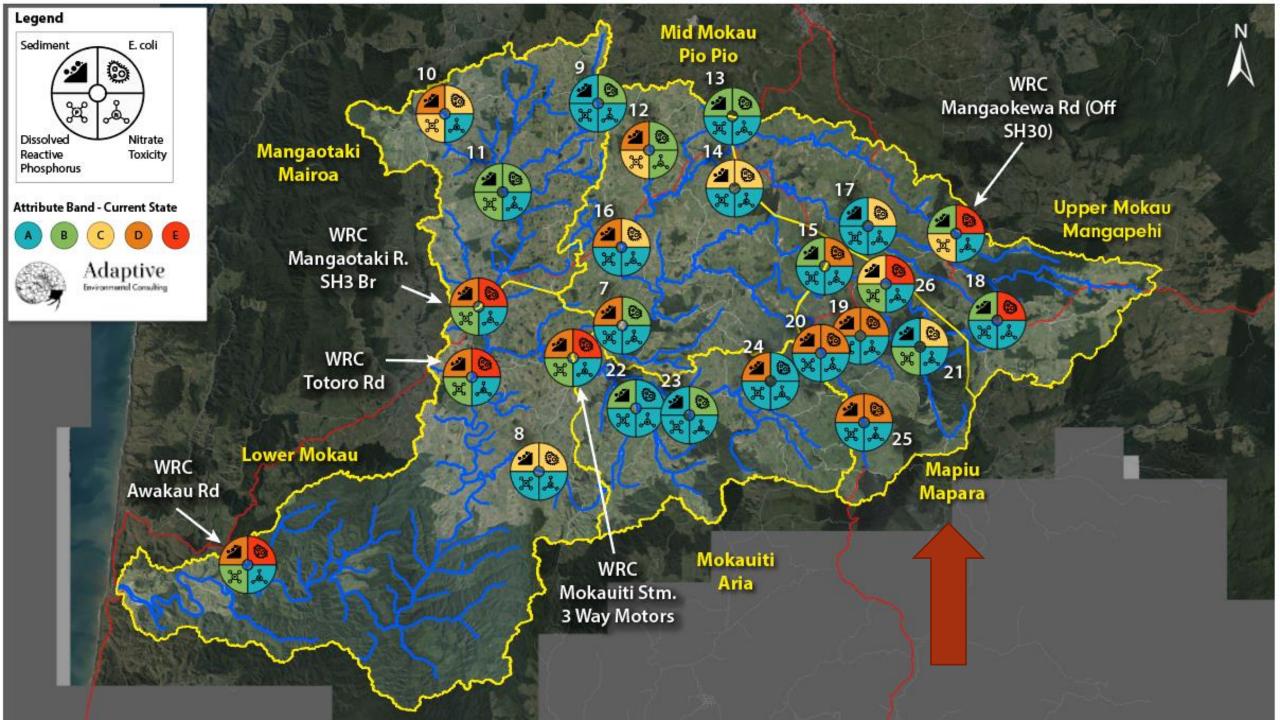
Key Results

- Water clarity and E. coli are the attributes to watch
- DRP is elevated at Puputaha and Waewaepitau streams
- Water clarity is lower in Mapiu stream than Mapara stream
- E. coli/ Pathogens are elevated at all sites


		Ecosystem Health								
Mapiu-Mapara	Human Contact	Water Quality								
								Sediment		
Annual Summary 2021 Labs: Hill/Analytica	E. coli/100 ml	Nitrate T	oxicity (TON mg N/L)	Ammor	iia Toxicity (mg N/L)	Dissolved Reactive Phosphorus (mg P/L)		Water Clarity Value ¹	National Bottom Line	
KCRC WQ SITES	95th Percentile	Median 95th Percentile		Median 95th Percentile		Median	95th Percentile	Median		
15-Mapara Stm	596 🗸	0.30 🗸	0.47 🗸	0.003 🗸	0.006 🗸	0.006 🗸	0.008 🗸	1.60 个	1.34	
19-Mangaiti Stm	1038 🗸	0.24 🗸	0.40 🗸	0.015 个	0.020 🗸	0.001 🗸	0.002 🗸	1.02 个	1.34	
20-Mapiu Stm	967 🗸	0.32 🗸	0.50 🗸	0.009 →	0.016 🗸	0.003 🗸	0.005 🗸	0.92 个	1.34	
21-Waewaepitau Stm	309 🗸	0.07 🗸	0.11 ↓	0.003 🗸	0.003 🗸	0.007 🗸	0.009 🗸	2.38 个	1.34	
25-Mapiu Stm - Waitataura Rd	625 🗸	0.45 🗸	0.54 🗸	0.008 ↓	0.010 🗸	0.004 🗸	0.005 🗸	1.22 个	1.34	
26-Puputaha Stream	2377 🗸	0.50 🗸	0.63 🗸	0.006 🗸	0.010 ↓	0.007 🗸	0.010 ↓	1.39 个	1.34	
Mokau R. Baseline (Jan-2015 to Aug-2020)	5000	0.54	1.00	0.009	0.047	0.009	0.022	0.79	1.34	

Annual Summary


Attribute Band - Current State

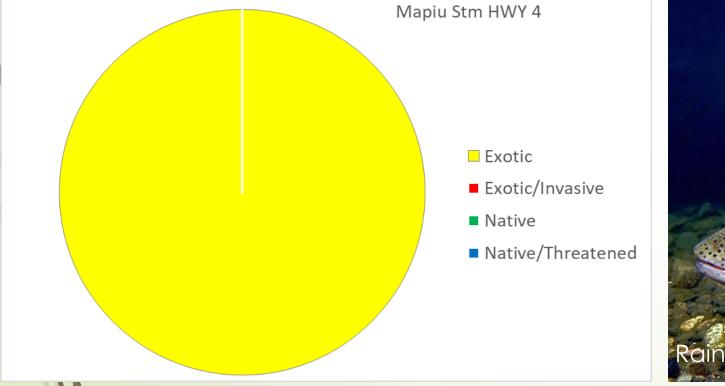

Mapiu-Mapara E. coli - 95th Percentile

E. Coli – Seasonal Results

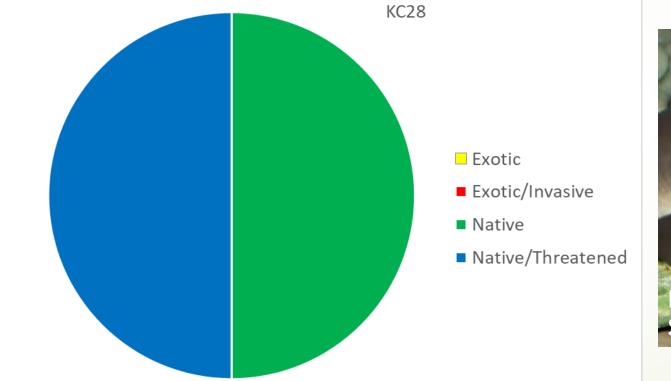
Water Clarity – Seasonal Results

Environmental DNA (eDNA)

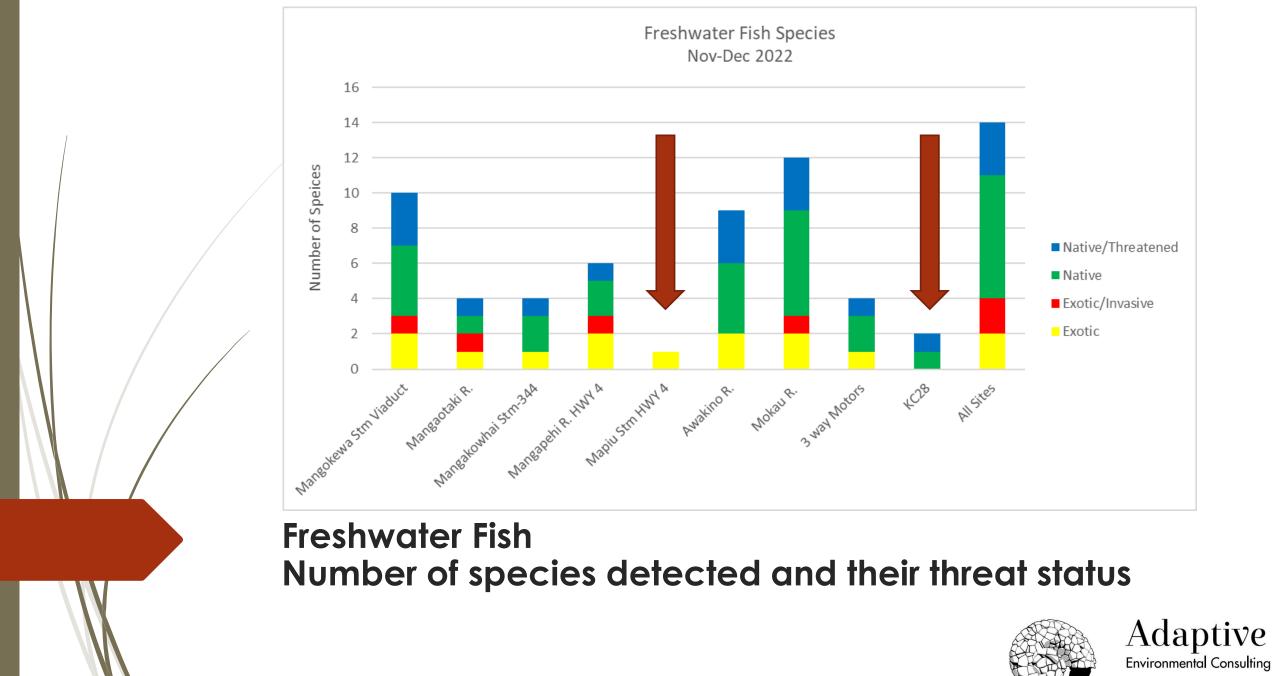
WILDERLAB



eDNA site Maipu Stream - HWY 4



Freshwater Fish Species Threat status & number of Sp.



Freshwater Fish Species Threat status & number of Sp.

Sensitive taxa (values of 8 or more)

Double gill mayfly (*Tepakia*) Mayfles Green stonefly (Stenoperla) Stoneflies

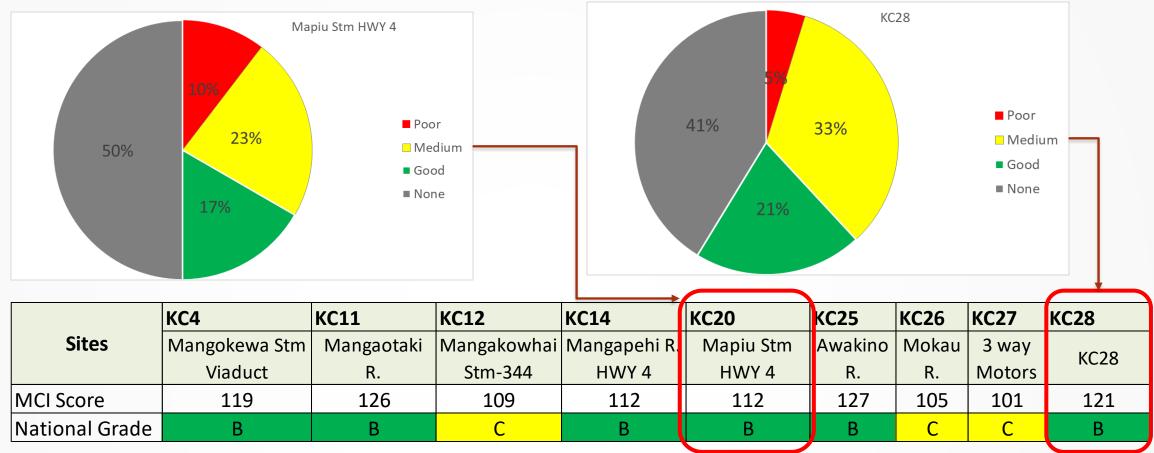
Tolerant taxa (values of 3 or less)

Spiral cased caddis (Helicopsyche) Cased caddisfiles Swimming mayfly (*Nesameletus*) Mayflies Stonefly (Zelandoperla) Stoneflies

FACTSHEET

Macroinvertebrate Community Index Scores (MCI) 1 - 10

Oligochaete worms (Oligochaeta)


Segmented worms

Snail (Physa) Snalls

FACTSHEET

Chironomid midge (Chironomus) Midges Rat tail maggots (Syrphidae) Other true files

5 Dec 2021 – All Invertebrates

Freshwater Invertebrate Community Health Index (MCI) eDNA Results 2021

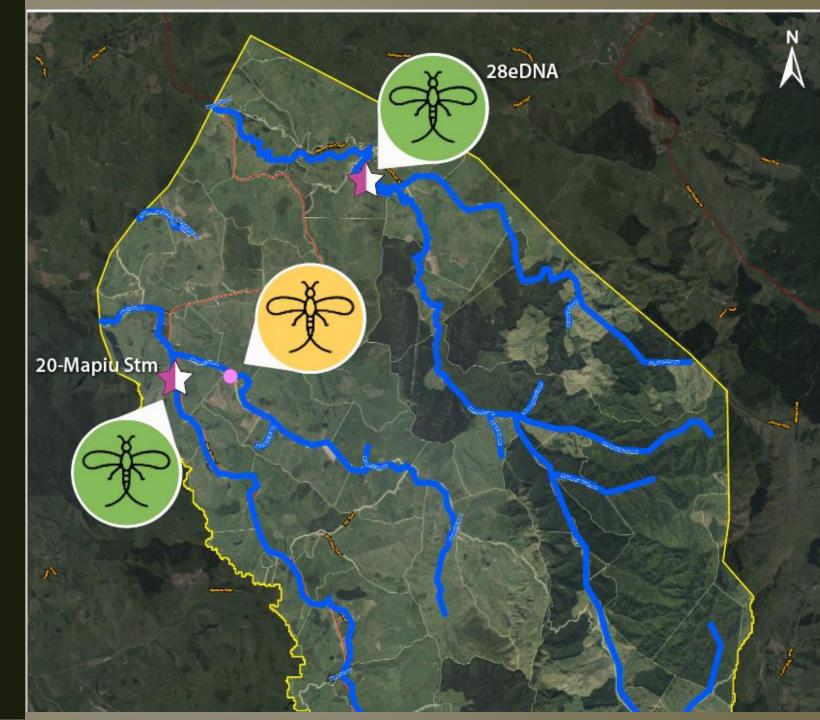
Mapiu Stream Site Characteristics

Riparian vegetation

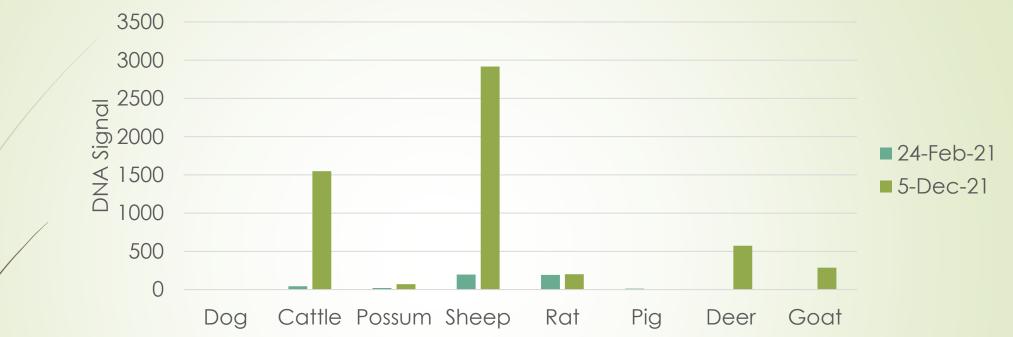
Some willows & exotic pasture, grazed to edges

Stock Access

Sheep access only


Water temperature

► Feb = 19.9 °C; May = 10.2 °C


Conductivity (µS/cm)

► Feb = 196; May = 129

The electrical conductivity of fresh groundwater is typically <100 µS/cm.</p>

Mammals - Mapiu Stm HWY4

Mammalian eDNA Signal Strength

Summary Points -Mapiu Mapara

Summary of 2021 KCRC Water Quality

- Water clarity and E. coli are the key attributes to address
- Phosphorus leaching may be occurring in the Mapara stream catchment

Water Quality Baseline 2015-20

- E.coli and Sediment were elevated in the Mokau River
- No data available for Mapiu-Mapara.

eDNA

- Rainbow trout was the only freshwater fish detected
- MCI grade = B

Ecology Baseline

- MCI baseline median grade = C
- MCI declined between 2009 & 2018 from B to D.

How Farm Management Influences Catchment Health

Management Actions

 \mathbf{V}

https://www.farmmenus.org.nz/drystock-farms/

Impact	Ν	P, Sed, E. coli
High	>25%	>50%
Medium	10-25%	20-50%
Low	<10%	<20%

Actions - Drystock Farms	Greatest Potential Reduction/WQ Benefit					
	Sediment	E. coli	Ν	Р		
Nutrient Management	20-50%	-	10-25%	>50%		
Stock Management	>50%	20-50%	10-25%	>50%		
- To improve herd fertility and finishing rate	-	-	10-25%	<20%		
- To reduce erosion & soil damage	>50%	20-50%	<10%	>50%		
Planting to Reduce Erosion	>50%	20-50%	10-25%	20-50%		
Managing Critical Source Areas	>50%	>50%	<10%	>50%		
Riparian Management	>50%	>50%	10-25%	>50%		
- Sediment Traps	>50%	<20%	<10%	>50%		
- Provide deer wallows away from waterways	>50%	>50%	<10%	20-50%		
Management of Fodder Crop Areas	>50%	20-50%	>25%	>50%		
FEP - Good farmer buy-in	>50%	>50%	>25%	>50%		
FEP - Poor buy-in	<20%	<20%	<10%	<20%		

Management Actions

https://www.farmmenus.org.nz/dairy-farms/

Impact	Ν	P, Sed, E. coli
High	>25%	>50%
Medium	10-25%	20-50%
Low	<10%	<20%

Actions - Dairy Farms		Greatest Potential Reduction/WQ Benefit				
	Sediment	E. coli	Ν	Р		
Nutrient Management	-	-	10-25%	20-50%		
Riparian Management	>50%	>50%	10-25%	20-50%		
- Sediment Traps	20-50%	<20%	<10%	20-50%		
- Constructed wetlands	20-50%	20-50%	10-25%	20-50%		
Effluent management	20-50%	>50%	10-25%	>50%		
Feed pads - Off Pasture Options	>50%	>50%	>25%	>50%		
Good Grazing Management - On Pasture Options	20-50%	20-50%	<10%	20-50%		
Managing Critical Source Areas	>50%	>50%	>25%	>50%		
Cropping Management	>50%	20-50%	>25%	>50%		
FEP - Good farmer buy-in	>50%	>50%	>25%	>50%		
FEP - Poor buy-in	<20%	<20%	<10%	<20%		

Menus

Menu of practices to improve water quality: dairy farms

Menu of practices to improve water quality: drystock farms

Menu of practices to improve water quality: cropping land

These menus provide a range of practices targeting cropping land, dairy and drystock farms to improve nutrient management and reduce impacts on water quality. <u>About these menus</u>

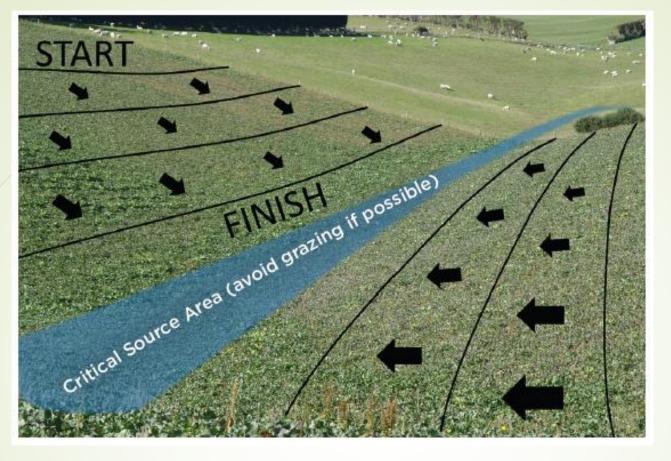
https://www.farmmenus.org.nz/

Ivienus nome

Click on the arrows on the variables in the header row to reorder the farm practices based on that variable. Use this menu in conjunction with your consultant or your Land Environment Plan.

Management area	On farm practic e	¢ N	¢ P	¢ Sed	¢ Pa	≎ Cost	¢ Benefit	Factors to consider
Cropping management	Actively manage grazing of winter crop areas to reduce risk of N leaching, run off, soil loss and compaction	C	M	M	M	\$\$	\$\$\$	Graze from top to bottom of paddock contour. Avoid leaving stock on during wet periods, for long periods, or concentrated on small sections of the crop.
Planting to reduce erosion 👔	Afforestation of steep southern faces (above Land Use Capability 6e)	M	M	M	-	\$\$ - \$\$\$	\$ - \$\$	Protects areas of greatest erosion risk and replaces low growing slopes with long term productive investment. Best suited to areas with large weed burdens and minimal profitability. Profitability depends on forestry regime and market. Any afforestation plan should include a harvest plan to ensure all land is harvestable.

Soil Damage - Pugging


Source: Keith Betteridge, AgResearch

Source: Keith Betteridge, AgResearch

Overgrazing & soil damage

- Reduces spring pasture production by up to 80%
- Can take 3 or more years to recover.

<u>Click here to find out more about soil erosion processes in New Zealand</u> <u>Click here to find out more about soil and pasture management</u> <u>Click here to learn about 11 ways to reduce pugging in your pasture</u>

https://beeflambnz.com/wintergrazing/pre-grazing

Take action to reduce potential losses of sediment, nutrients and E. coli to waterways during wetter months

Functions of riparian buffers

10

5

15

20

Click here to learn more about the role riparian setback distances

25

30

Livestock damage Fish habitat Bank stability Flood control Shade Leaf input Filtration Wood input Nutrient uptake Wildlife habitat

Diagram from conference paper by J Quinn (2012)

Riparian management - results from New Zealand

Riparian management schemes assessed, showing measures of water quality and stream health recorded as better (+), worse (-), or no change (=) in the buffer compared to the control reach for each variable.

				Difference in buffer relative to pasture control reach							
Site	Time since planting (yr)	Planted length (m)	Average buffer width (m)	Phosphorus (over 10% change in dissolved P)	Nitrogen (over 10% change in dissolved N)	Faecal inputs (over 10% change in <i>E. coli</i>)	Visual clarity (over 10% change)	Mean temp- perature (more than 1 deg change)	Stability (change in Pfankuch class)**	Invertebrates (change in QMCI class)***	
Raglan	2	200	12.7	+	+	-	=	=	+	=	
Matarawa	3	300	3.5	-	=	+	+	=	+	-	
Little Waipa	4	660	10.6	+	=	+	+	-	=	=	
Waitetuna	6	1600	7.2	=	-	nd	-	=	=	=	
Mangawara	8	200	15.5	=	=	=	=	nd	=	+	
Tapapakang	a 10	2000	11.4	+	+	+	+	-	=	-	
Kakahu*	20	3600	21	+	+	nd	+	+	=	+	
Waitomo	20	100	18.8	=	=	-	-	=	=	=	
Taupo*	24	4200	75	+	-	nd	+	+	+	+	

<u>Click here to view source publication</u>

What can we do to improve catchment health?

- Retire & plant marginal land
- Exclude stock from streams, wetlands & boggy areas
- Plant retired riparian margins
- Manage nutrients & effluent conservatively
- Identify and address CSAs

