
Upper Mokau/Mangapehi & Upper Mangaokewa Freshwater Monitoring Results Merrin Whatley (PhD) – 25 July 2022

Indicators of freshwater health

- Monitoring results
- On farm actions

Indicators of Freshwater Health

Flow

Wildlife

Habitat

Energy & Nutrient Dynamics

Water Quality

Identifying drivers of Health/Mauri of our Waterways

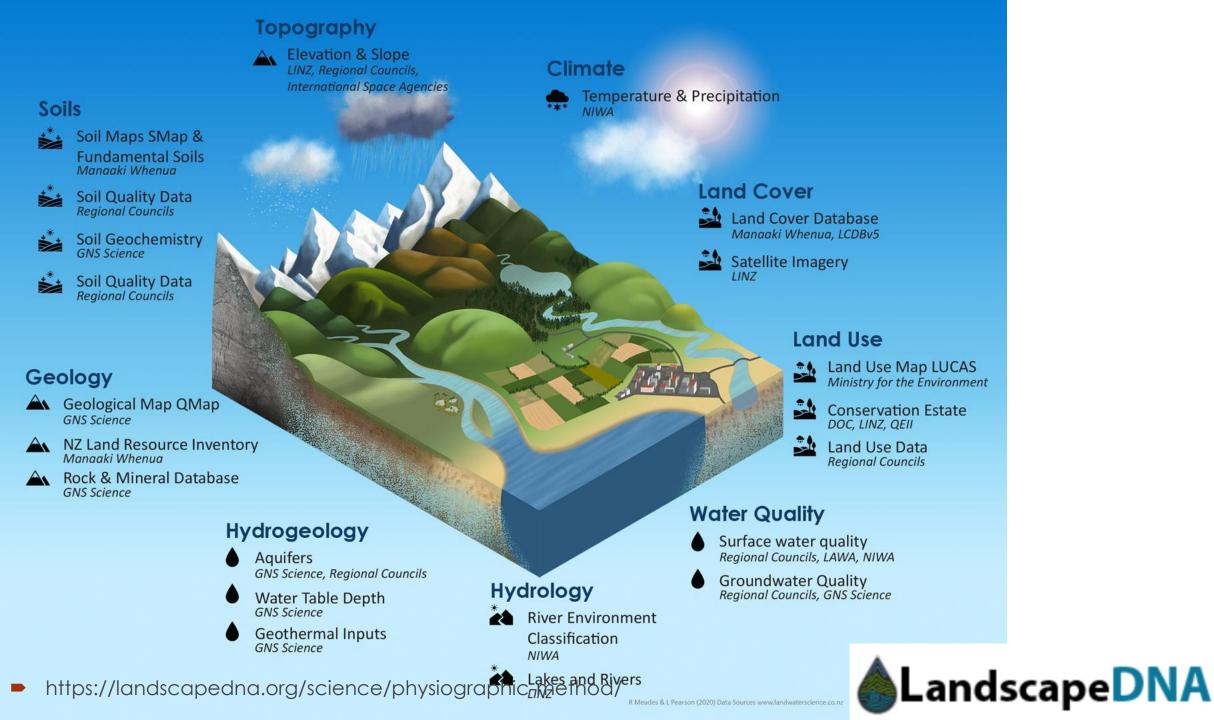
The key resources, attribute/indicator?

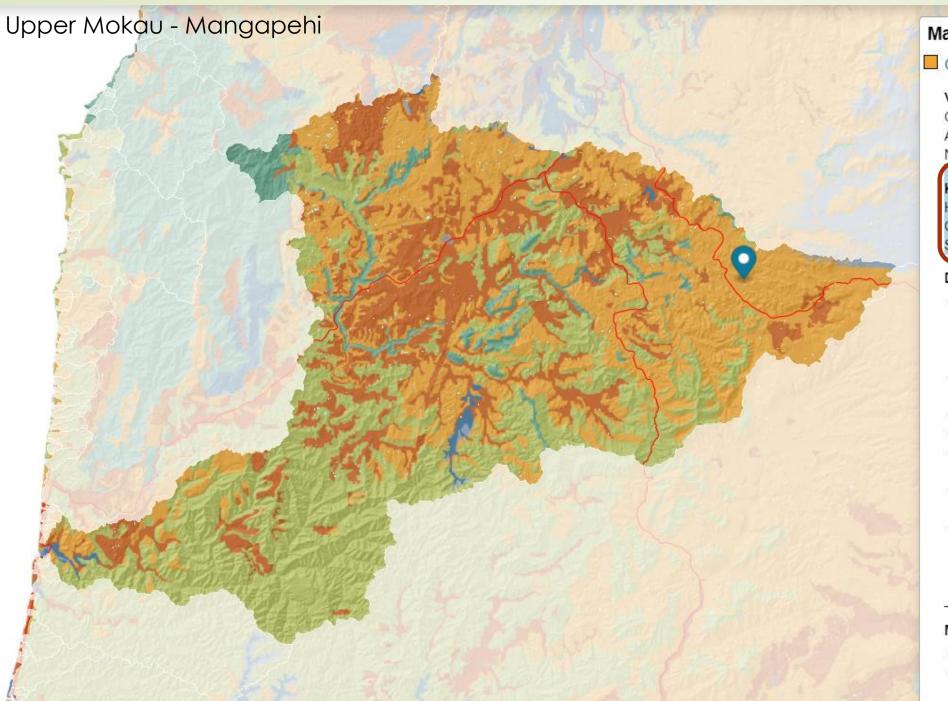
7

Where in the catchment are they coming from?

Are there seasonal changes or changes over time?

What are the underlying processes or practices contributing to contaminant loss?




Tailor catchment-based interventions to target resource loss over time and space.

Natural Influences

Climate Topography Geology Soils Hydrology Land cover

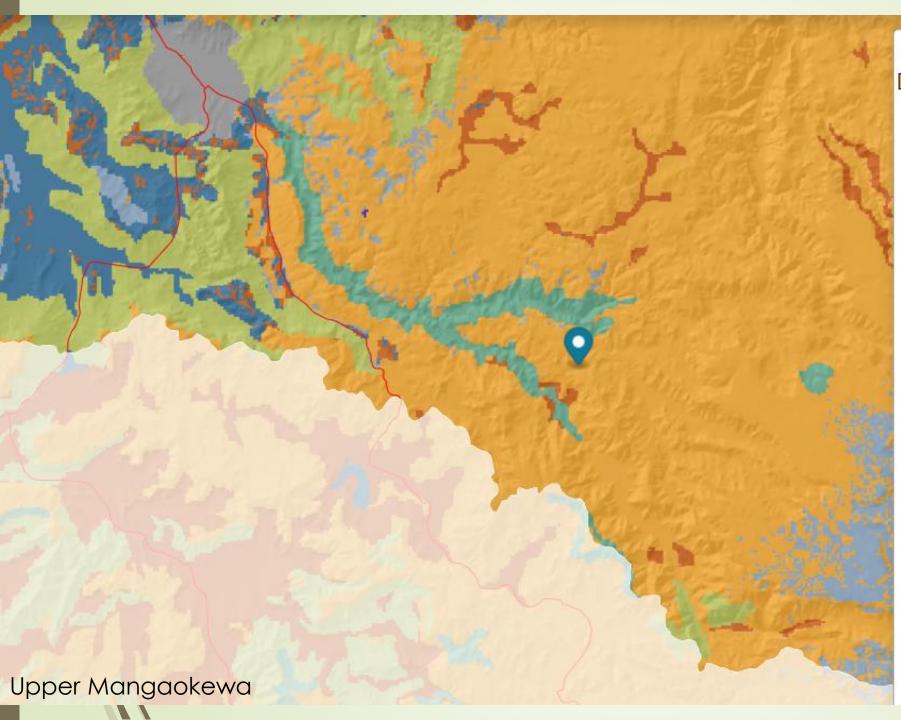
Map Information

Oxidising Soil & Aquifer

Variants

Overland flow	Not applicable
Artificial drainage	Not applicable
Natural soil bypass	Not applicable

Key Information


Hydrological Pathway	Deep drainage
Contaminant Risk	Nitrate nitrogen
Surface water catchment	Mokau River

Description

- Predominantly occurs in lowland, low relief areas where there are moderately-well to well drained soils and oxygen-rich (oxidising) underlying aquifers.
- Runoff risk is elevated in areas of sloping or slowly permeable soils.
- · Environment is oxidising.
- · Local rainfall is the main source of water.
- High ability to filter and adsorb contaminants and resist erosion.
- Deep drainage to the underlying aquifer is the dominant hydrological pathway.
- High risk of nitrate nitrogen leaching to shallow aquifer which can build up over time increasing the concentration in groundwater and instream.

More Information

- Sibling class: Over weak bedrock
- Science Oxidising Soil & Aquifer

Map Information

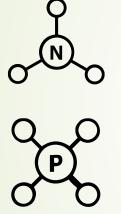
Oxidising Soil & Aquifer

Variants

Overland flow	Not applicable
Artificial drainage	Not applicable
Natural soil bypass	Not applicable

Key Information

-lydrological Pathway	Deep drainage
Contaminant Risk	Nitrate nitroge
Surface water catchment	Waikato River


Description

- Predominantly occurs in lowland, low relief areas where there are moderately-well to well drained soils and oxygen-rich (oxidising) underlying aquifers.
- Runoff risk is elevated in areas of sloping or slowly permeable soils.
- Environment is oxidising.
- · Local rainfall is the main source of water.
- High ability to filter and adsorb contaminants and resist erosion.
- Deep drainage to the underlying aquifer is the dominant hydrological pathway.
- High risk of nitrate nitrogen leaching to shallow aquifer which can build up over time increasing the concentration in groundwater and instream.

Attribute Descriptions


Water Clarity – Suspended Particles Including Sediment

Nitrate

Dissolved Reactive Phosphorus (DRP)

Pathogens/E. coli (short for Escherichia coli)

Freshwater Macroinvertebrate Community Index (MCI)

Monitoring in Upper Mokau - Mangapehi

Waikato Regional Council Sites

- Upper Mokau-Mangaphei SC 2 sites in total
 - 1 River Water Quality Sites
 - 1 Ecological Monitoring Sites
- Mokau River 22 sites in total
 - 5 River Water Quality Sites
 - 16 Ecological Monitoring Sites
 - 1 River flow Site

Frequency of Measurements

- WQ collected by monthly grab sample
- Ecology site visited every 3 years
- Continuous river flow recorded every 15 minutes

Monitoring in Upper Mokau - Mangapehi

KCRC Sites

- Upper Mokau-Mangaphei SC 4 sites in total
- 4 Water Quality sites
- 1 eDNA site

Frequency of Measurements

- Water quality collected by grab sample 4 times a year
- eDNA collected twice, 25 Feb & 5 Dec 2021

Monitoring Sites

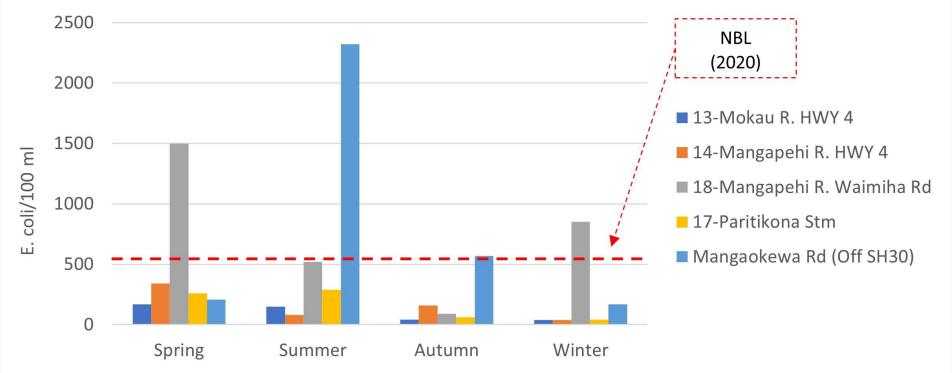
Aquatic Life - WRC

Water Quality - WRC

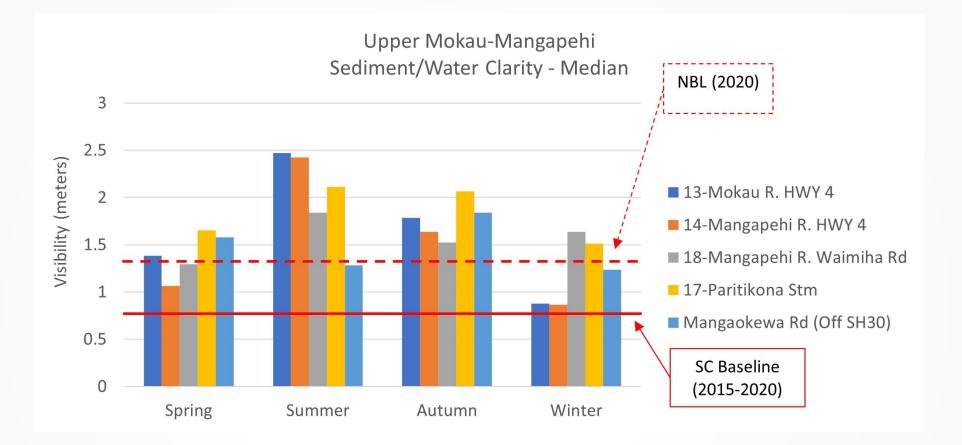
River Flow - WRC

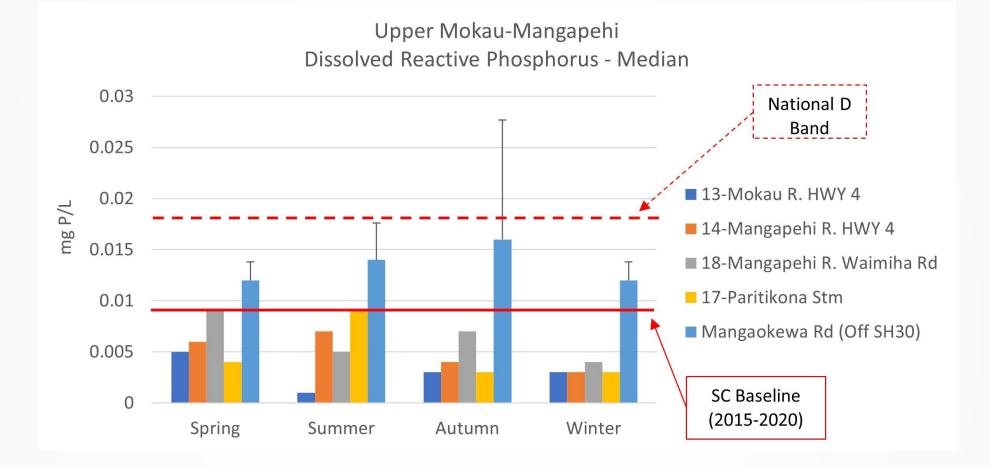
Water Quality - KCRC

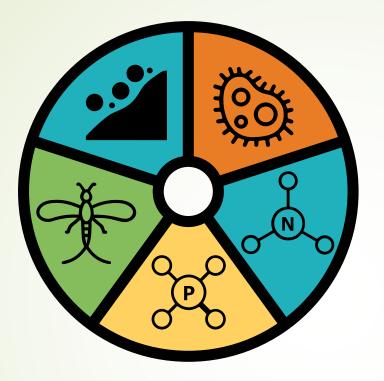
eDNA - KCRC


		Ecosystem Health							
Upper Mokau-Mangapehi	Human Contact	act Water Quality							
								Sediment	
Annual Summary 2021		Nitrate T	oxicity (TON mg	Ammor	nia Toxicity (mg	g Dissolved Reactive		Water	National
Annual Summary 2021 Labs: Hill/Analytica	E. coli/100 ml		N/L)		N/L) Phosphorus (mg		horus (mg P/L)	Clarity	Bottom
								Value ¹	Line
KCRC WQ SITES	95th Percentile	Median	95th Percentile	Median	95th Percentile	Median	95th Percentile	Median	
13-Mokau R. HWY 4	167 🗸	0.26 🗸	0.72 🗸	0.007 🗸	0.010 ↓	0.003 🗸	0.005 🗸	1.58 个	1.34
14-Mangapehi R. HWY 4	313 🗸	0.39 🗸	0.63 🗸	0.006 🗸	0.026 🗸	0.005 🗸	0.007 🗸	1.35 个	1.34
17-Paritikona Stm	286 🗸	0.24 🗸	0.47 🗸	0.003 🗸	0.004 🗸	0.004 🗸	0.008 🗸	1.86 个	1.34
18-Mangapehi R.	1403 🗸	0.52 🗸	0.88 🗸	0.017 个	0.020 🗸	0.006 🗸	0.009 🗸	1.58 个	1.34
WRC WQ SITES									
Mangaokewa Rd (Off SH30)	1690 🗸	0.29 🗸	0.66 🗸	0.005 🗸	0.008 🗸	0.014 个	0.024 个	1.56 个	1.34
Mokau R. Baseline (Jan-2015 to Aug-2020)	5000	0.54	1.00	0.009	0.047	0.009	0.022	0.79	1.34

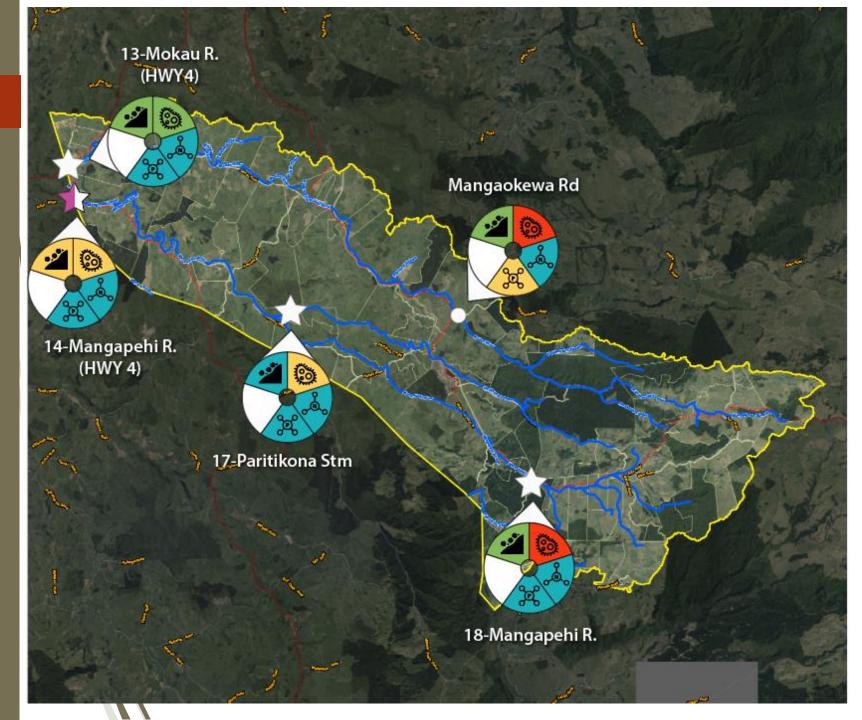
Annual Summary


Attribute Band - Current State


Upper Mokau-Mangapehi E. coli - 95th Percentile


E. Coli – Seasonal Results

Water Clarity – Seasonal Results



DRP – Seasonal Results

Attribute Band - Current State

Attribute Dials

Key Results

- E. coli and water clarity are the attributes to watch
- DRP is elevated at Mangaokewa Rd
- Water clarity is lowest at 14-Mangapehi R.
- Highest WQ at 13-Mokau R. & 17-Paritikona stm.
- Lowest WQ at Mangaokewa Rd

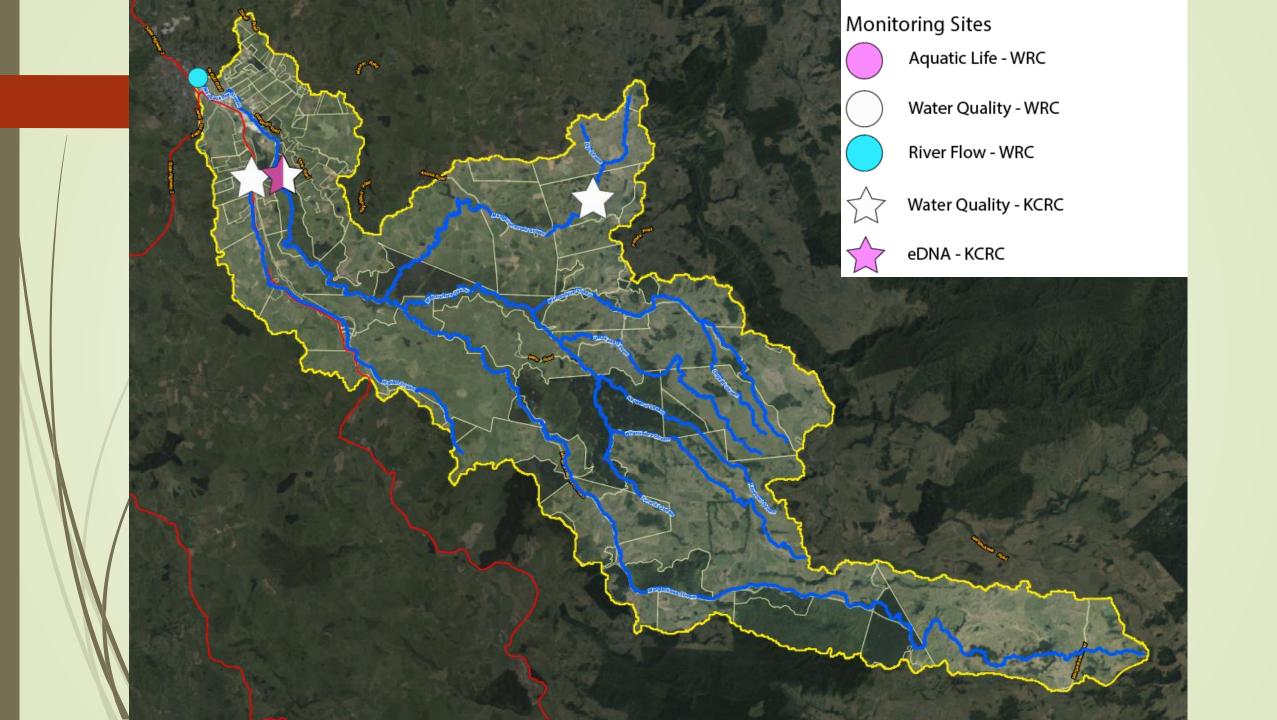
Monitoring in Upper Mangaokewa

Waikato Regional Council Sites

- Upper Mokau-Mangaphei SC 1 site in total
 - I River Water Quality + River Flow Site

Frequency of Measurements

- WQ collected by monthly grab sample
- Ecology site visited every 3 years
- Continuous river flow recorded every 15 minutes

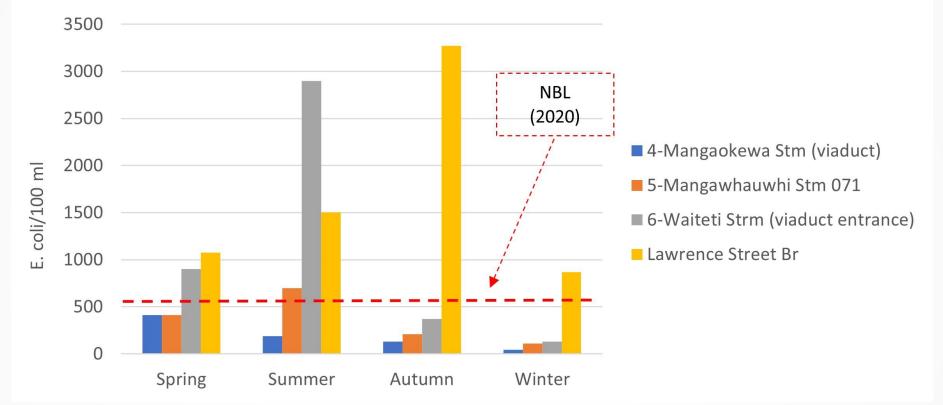

Monitoring in Upper Mangaokewa

KCRC Sites

- Upper Mokau-Mangaphei SC 3 sites in total
- 3 Water Quality sites
- 1 eDNA site

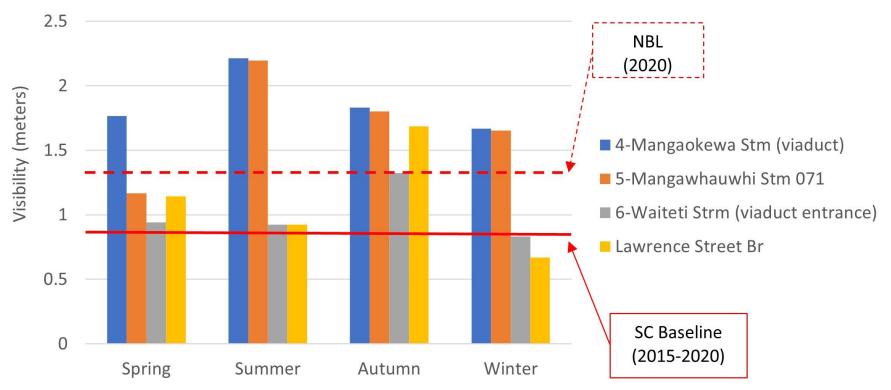
Frequency of Measurements

- Water quality collected by grab sample 4 times a year
- eDNA collected twice, 25 Feb & 5 Dec 2021

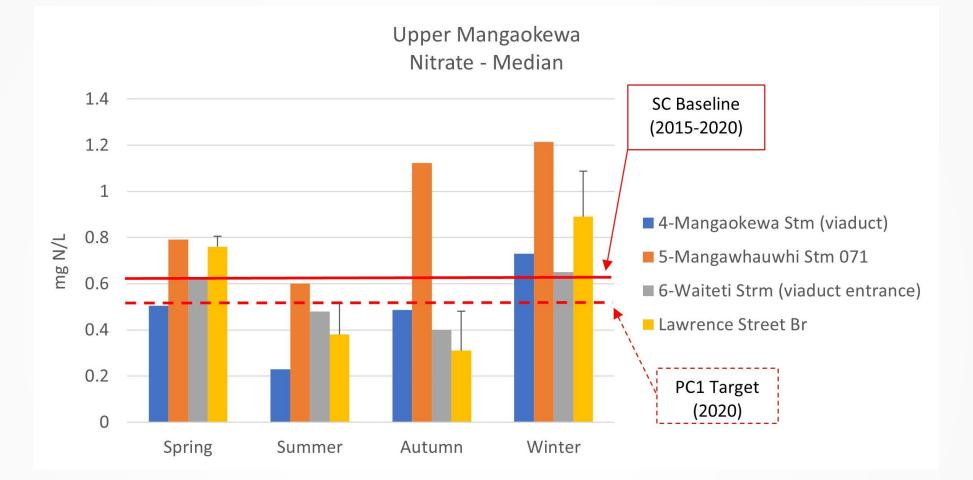

		Ecosystem Health								
Upper Mangaokewa ¹	Human Contact	Water Quality								
								Sediment		
Annual Summary 2021 Labs: Hill/Analytica	E. coli/100 ml	Nitrate	(TON mg N/L)	Ammo	onia (mg N/L)	Dissolved Reactive Phosphorus (mg P/L)		Water Clarity Value ²	National Bottom Line	
KCRC WQ SITES	95th Percentile	Median	95th Percentile	Median	95th Percentile	Median	95th Percentile	Median		
4-Mangaokewa Stm (viaduct)	377 🗸	0.50 🗸	0.70 ↓	0.004 🗸	0.009 🗸	0.009 🗸	0.013 ↓	1.80 个	1.34	
5-Mangawhauwhi Stm 071	657 🗸	0.96 个	1.20 个	0.010 🗸	0.014 🗸	0.004 🗸	0.008 ↓	1.73 个	1.34	
6-Waiteti Stm (viaduct entrance)	2600 🗸	0.55 🗸	0.65 🗸	0.020 个	0.022 🗸	0.008↓ 0.011↓		0.93 个	1.34	
WRC WQ SITES										
Lawrence Street Br	2600 🗸	0.52 🗸	0.98 🗸	0.014 →	0.020 🗸	0.014 个	0.023 🗸	0.88 个	0.61	
Mangaokewa R. Baseline (Jan-2015 to Aug-2020)	15200	0.63	1.03	0.014	0.042	0.013	0.028	0.87	0.61	

Annual Summary

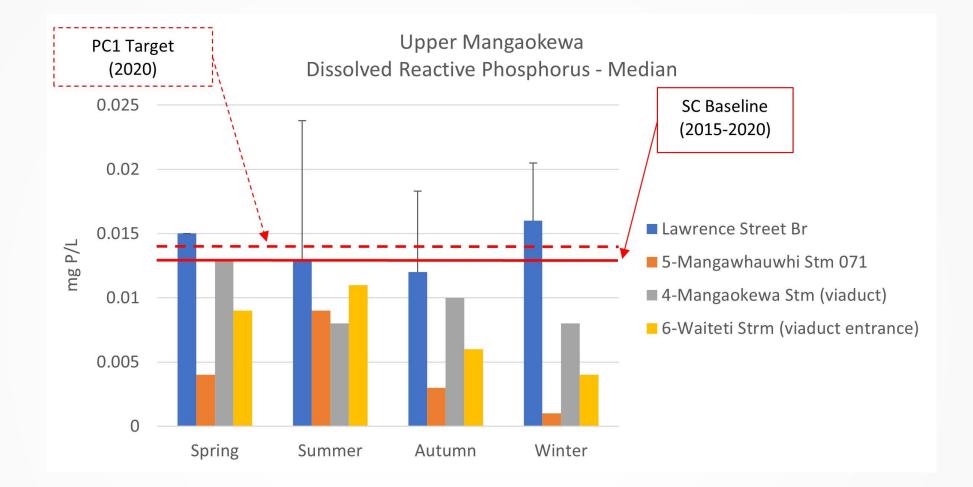
Attribute Band - Current State

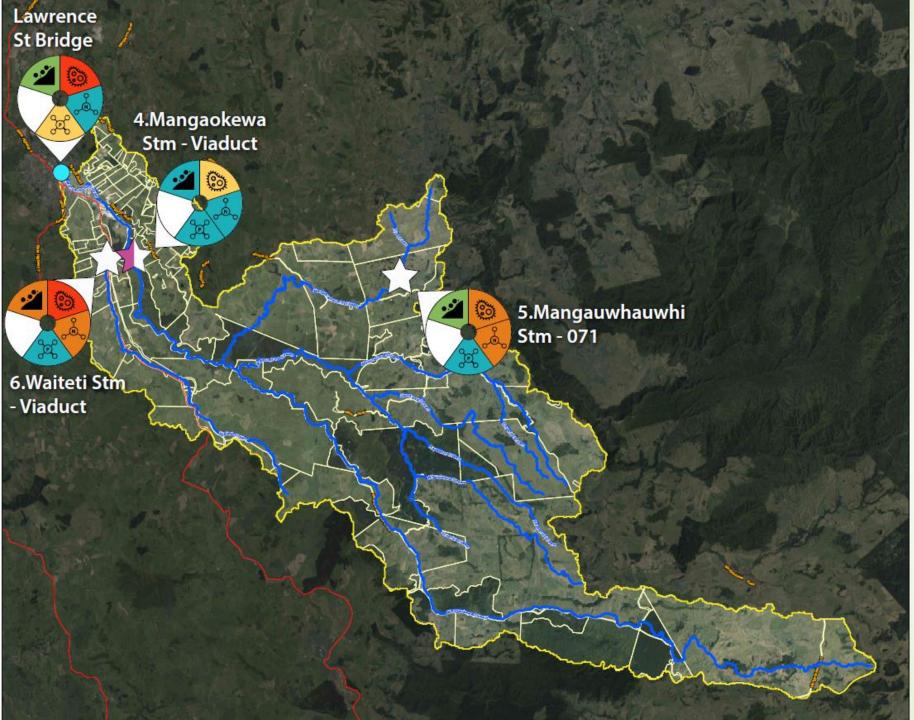


Upper Mangaokewa E. coli - 95th Percentile



E. Coli – Seasonal Results


Upper Mangaokewa Sediment/Water Clarity - Median


Water Clarity – Seasonal Results

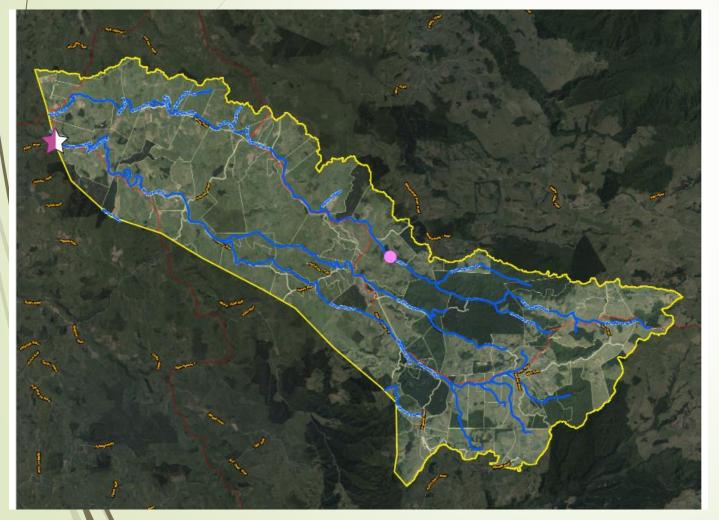
Nitrate – Seasonal Results

DRP – Seasonal Results

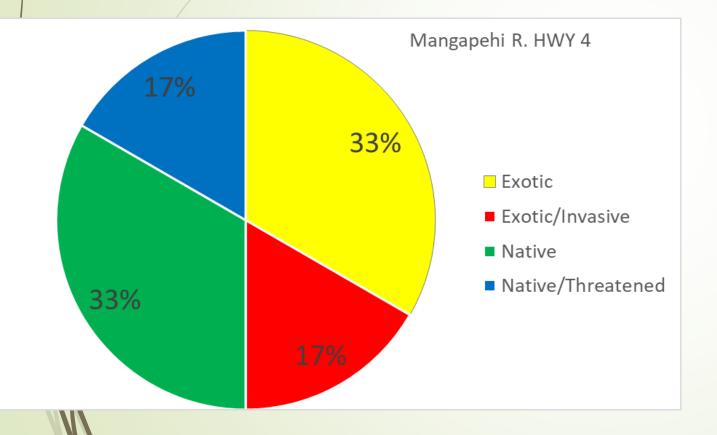
Key Results

- E. coli, nitrate and ammonia are the attributes to address
- DRP is elevated at Lawrence st bridge
- Water clarity is lowest at 6.Waiteti stm
- Highest general WQ at 4.Mangaokewa
- Lowest general WQ at 6.Waiteti

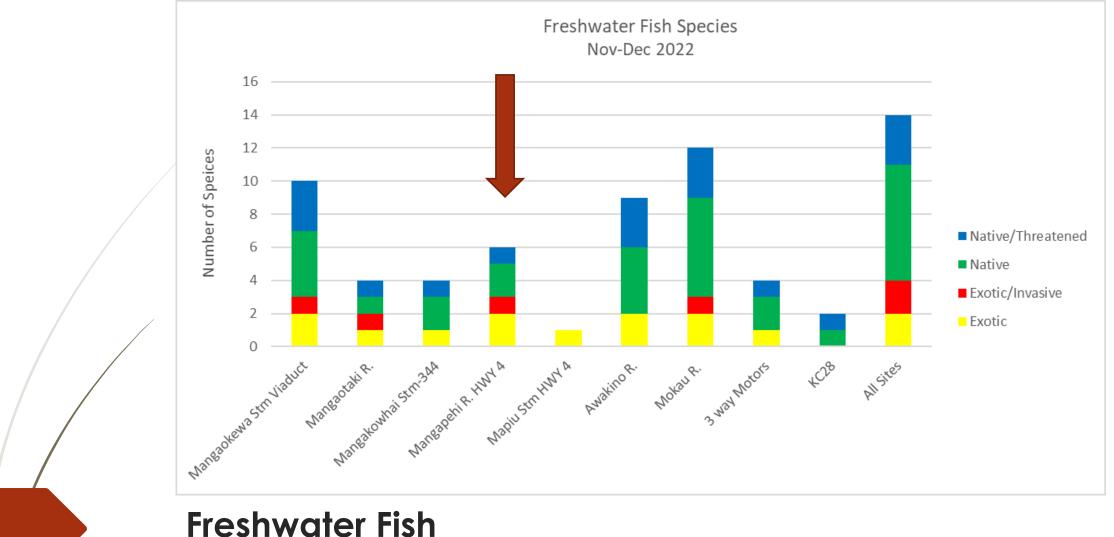
Environmental DNA (eDNA)



WILDERLAB




eDNA site Upper Mokau 14-Mangapehi River



Freshwater Fish Species Threat status

Number of species detected and their threat status

Adaptive Environmental Consulting

Sensitive taxa (values of 8 or more)

Double gill mayfly (*Tepakia*) Mayfles Green stonefly (Stenoperla) Stoneflies

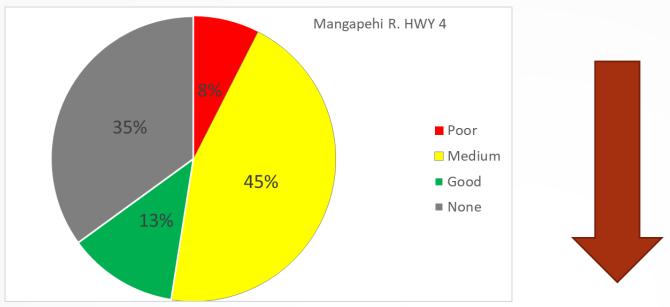
Tolerant taxa (values of 3 or less)

Spiral cased caddis (Helicopsyche) Cased caddisfiles Swimming mayfly (*Nesameletus*) Mayflies Stonefly (Zelandoperla) Stoneflies

FACTSHEET

Macroinvertebrate Community Index Scores (MCI) 1 - 10

Oligochaete worms (Oligochaeta)


Segmented worms

Snail (Physa) Snalls

FACTSHEET

Chironomid midge (Chironomus) Midges Rat tail maggots (Syrphidae) Other true files

5 Nov 2021 – All Invertebrates

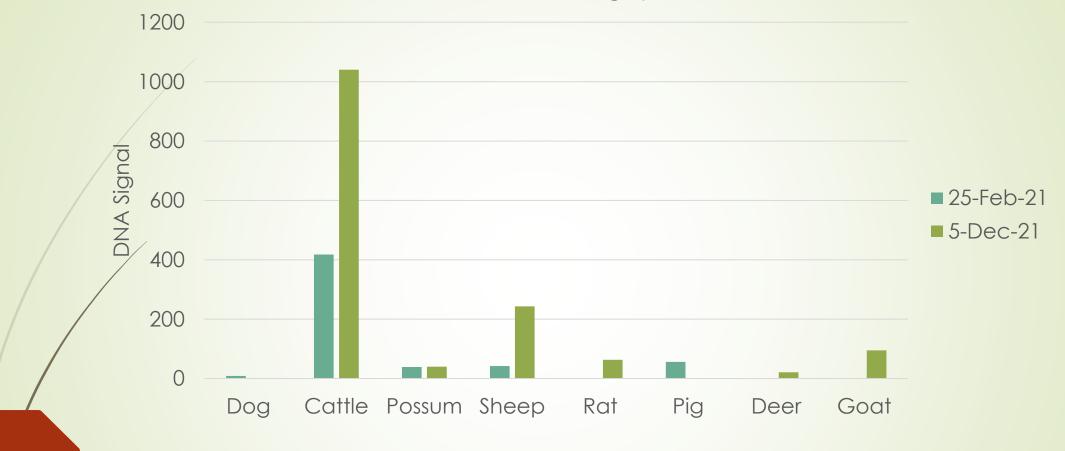
	KC4	KC11	KC12	KC14	КС20	KC25	KC26	KC27	KC28
Sites	Mangaokewa	Mangaotaki	Mangakowhai	Mangapehi R.	Mapiu Stm	Awakino	Mokau	3 way	KC28
	Stm Viaduct	R.	Stm-344	HWY 4	HWY 4	R.	R.	Motors	NC20
MCI Score	119	126	109	112	112	127	105	101	121
National Grade	В	В	С	В	В	В	С	С	В

Freshwater Invertebrate Community Health Index (MCI) eDNA Results 2021

14-Mangapehi R. Site Characteristics

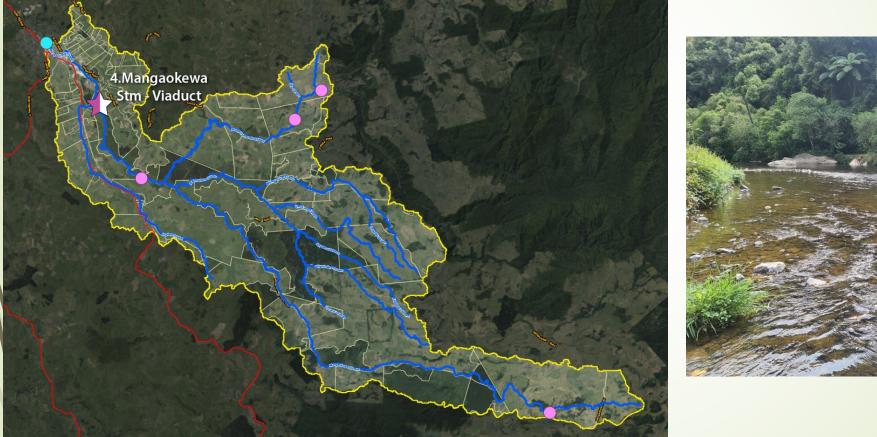
Riparian vegetation

Weedy grass, convolvulus & blackberry

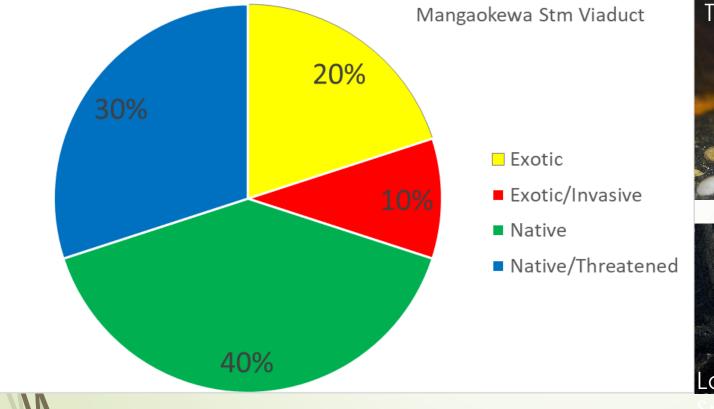

Stock Access
 Yes, Cattle & Sheep

Water temperature (°C)
Feb = 20.1; Dec = 11.3

Conductivity (µS/cm) ► Feb = 121; Dec = 96

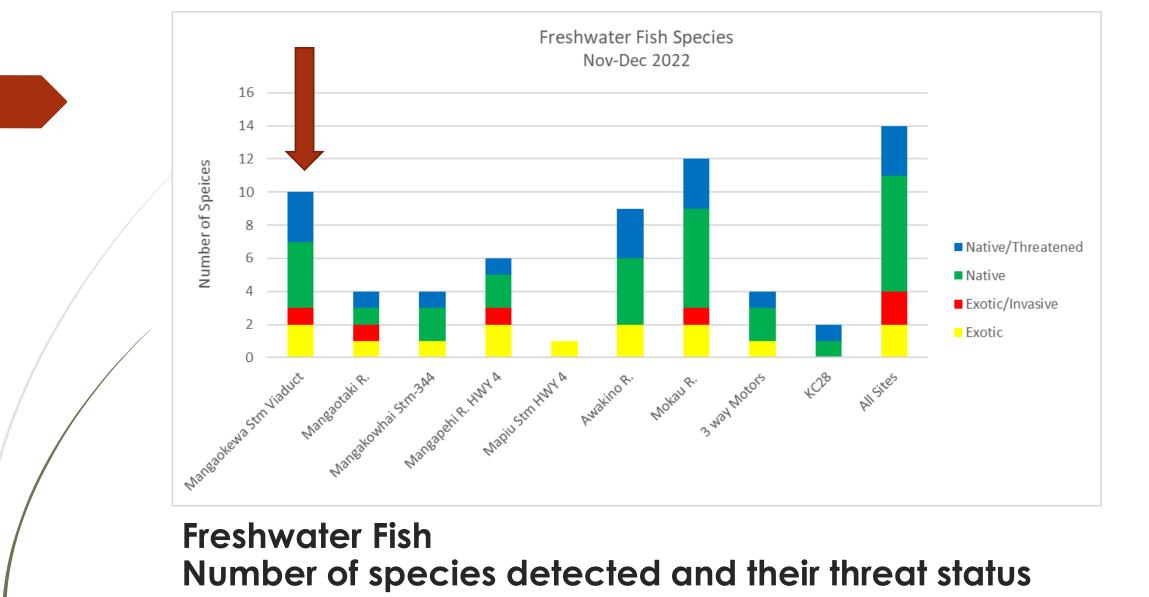


Mammals - 14. Mangapehi Stream

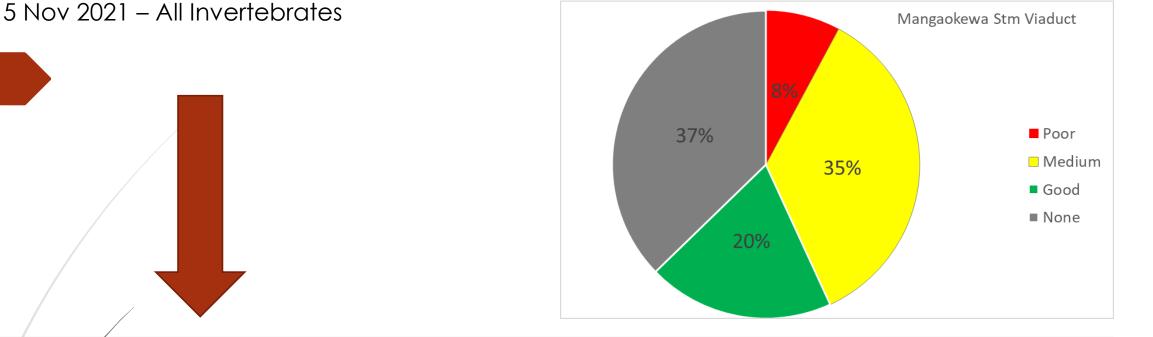

Mammalian eDNA Signal Strength

eDNA site Upper Mangaokewa 4-Mangaokewa Stream



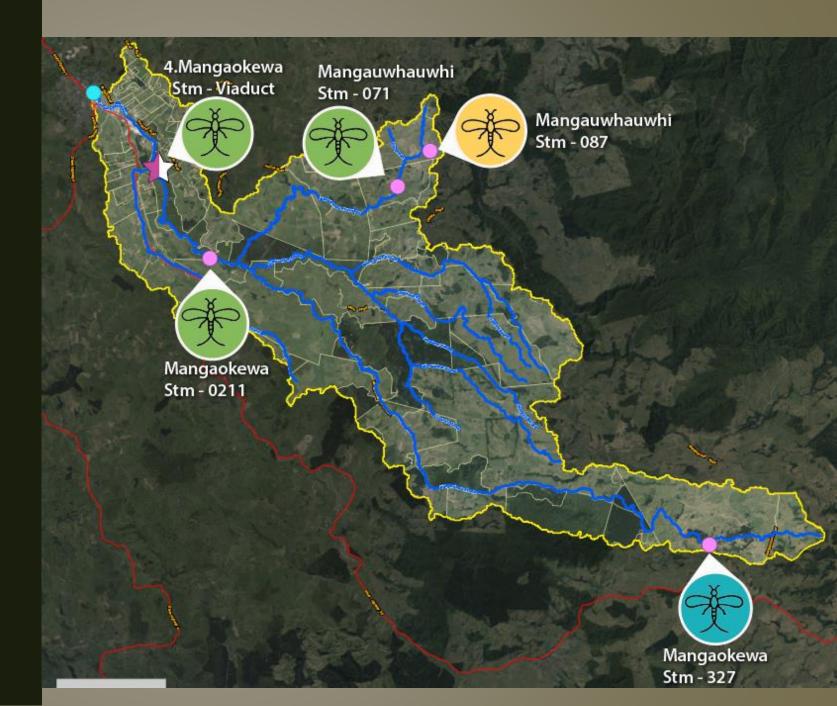


Freshwater Fish Species Threat status

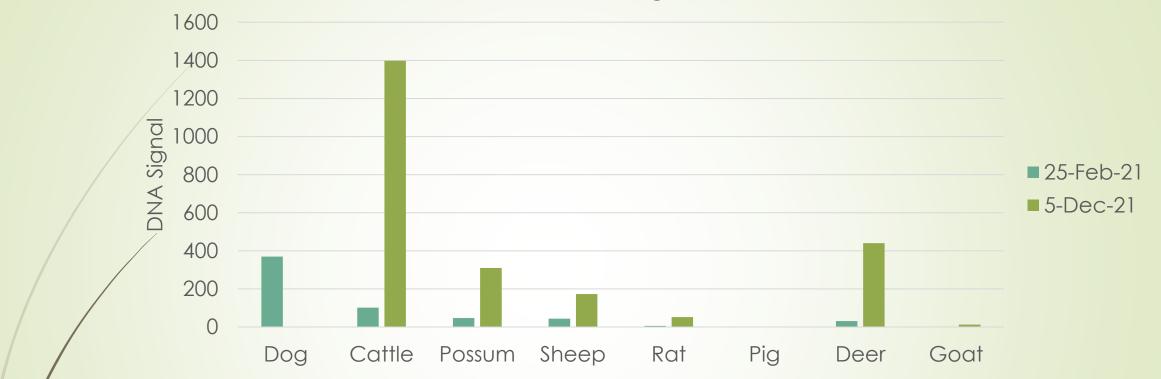


	KC4	KC11	KC12	KC14	КС20	KC25	KC26	KC27	KC28	
Sites	Mangaokewa	Mangaotaki	Mangakowhai	Mangapehi R.	Mapiu Stm	Awakino	Mokau	3 way	KC28	
	Stm Viaduct	R.	Stm-344	HWY 4	HWY 4	R.	R.	Motors	NC20	
MCI Score	119	126	109	112	112	127	105	101	121	
National Grade	В	В	С	В	В	В	С	С	В	

Freshwater Invertebrate Community Health Index (MCI) eDNA Results 2021 4-Mangaokewa stream Site Characteristics


Riparian vegetation

Exotic grass one side, native the other


Stock Access
No, public reserve

Water temperature (°C)
 Feb = 19.2; May = 11.5

Conductivity (µS/cm)
 Feb = 231; May = 156

Mammals - 4. Mangaokewa Stream

Mammalian eDNA Signal Strength

Summary Points -Upper Mokau Mangapehi Summary of 2021 KCRC Water Quality

- E. coli is the key attribute to investigate
- Keep an eye on risk to water clarity/sediment and/or nitrate loss

Water Quality Baseline 2015-20

E.coli and Sediment were elevated in Mokau River

eDNA

- 6 Fish sp. Detected mid diversity over all KCRC sites
- MCI = 112/ B Grade

Summary Points -Upper Mangaokewa

Summary of 2021 KCRC Water Quality

- E. coli, nitrate and ammonia are the key attributes to investigate
- DRP is elevated at Lawrence St bridge
- Water clarity is low at 6-Waiteti stream

Water Quality Baseline 2015-20

E.coli, nitrate, ammonia & DRP were elevated

eDNA

Good results for native fish community and invertebrates

How Farm Management Influences Catchment Health

Management Actions

 \mathbf{V}

https://www.farmmenus.org.nz/drystock-farms/

Impact	Ν	P, Sed, E. coli
High	>25%	>50%
Medium	10-25%	20-50%
Low	<10%	<20%

Actions - Drystock Farms	Greatest Potential Reduction/WQ Benefit						
	Sediment	E. coli	Ν	Р			
Nutrient Management	20-50%	-	10-25%	>50%			
Stock Management	>50%	20-50%	10-25%	>50%			
- To improve herd fertility and finishing rate	-	-	10-25%	<20%			
- To reduce erosion & soil damage	>50%	20-50%	<10%	>50%			
Planting to Reduce Erosion	>50%	20-50%	10-25%	20-50%			
Managing Critical Source Areas	>50%	>50%	<10%	>50%			
Riparian Management	>50%	>50%	10-25%	>50%			
- Sediment Traps	>50%	<20%	<10%	>50%			
- Provide deer wallows away from waterways	>50%	>50%	<10%	20-50%			
Management of Fodder Crop Areas	>50%	20-50%	>25%	>50%			
FEP - Good farmer buy-in	>50%	>50%	>25%	>50%			
FEP - Poor buy-in	<20%	<20%	<10%	<20%			

Management Actions

https://www.farmmenus.org.nz/dairy-farms/

Impact	Ν	P, Sed, E. coli
High	>25%	>50%
Medium	10-25%	20-50%
Low	<10%	<20%

Actions - Dairy Farms		Greatest Potential Reduction/WQ Benefit				
	Sediment	E. coli	Ν	Р		
Nutrient Management	-	-	10-25%	20-50%		
Riparian Management	>50%	>50%	10-25%	20-50%		
- Sediment Traps	20-50%	<20%	<10%	20-50%		
- Constructed wetlands	20-50%	20-50%	10-25%	20-50%		
Effluent management	20-50%	>50%	10-25%	>50%		
Feed pads - Off Pasture Options	>50%	>50%	>25%	>50%		
Good Grazing Management - On Pasture Options	20-50%	20-50%	<10%	20-50%		
Managing Critical Source Areas	>50%	>50%	>25%	>50%		
Cropping Management	>50%	20-50%	>25%	>50%		
FEP - Good farmer buy-in	>50%	>50%	>25%	>50%		
FEP - Poor buy-in	<20%	<20%	<10%	<20%		

Menus

Menu of practices to improve water quality: dairy farms

Menu of practices to improve water quality: drystock farms

Menu of practices to improve water quality: cropping land

These menus provide a range of practices targeting cropping land, dairy and drystock farms to improve nutrient management and reduce impacts on water quality. <u>About these menus</u>

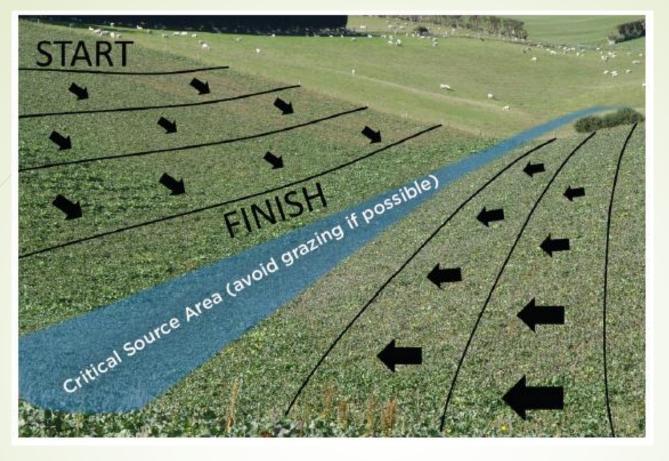
https://www.farmmenus.org.nz/

Ivienus nome

Click on the arrows on the variables in the header row to reorder the farm practices based on that variable. Use this menu in conjunction with your consultant or your Land Environment Plan.

Management area	On farm practic e	¢ N	¢ P	¢ Sed	¢ Pa	≎ Cost	¢ Benefit	Factors to consider
Cropping management	Actively manage grazing of winter crop areas to reduce risk of N leaching, run off, soil loss and compaction	C	M	M	M	\$\$	\$\$\$	Graze from top to bottom of paddock contour. Avoid leaving stock on during wet periods, for long periods, or concentrated on small sections of the crop.
Planting to reduce erosion 👔	Afforestation of steep southern faces (above Land Use Capability 6e)	M	M	M	-	\$\$ - \$\$\$	\$ - \$\$	Protects areas of greatest erosion risk and replaces low growing slopes with long term productive investment. Best suited to areas with large weed burdens and minimal profitability. Profitability depends on forestry regime and market. Any afforestation plan should include a harvest plan to ensure all land is harvestable.

Soil Damage - Pugging


Source: Keith Betteridge, AgResearch

Source: Keith Betteridge, AgResearch

Overgrazing & soil damage

- Reduces spring pasture production by up to 80%
- Can take 3 or more years to recover.

<u>Click here to find out more about soil erosion processes in New Zealand</u> <u>Click here to find out more about soil and pasture management</u> <u>Click here to learn about 11 ways to reduce pugging in your pasture</u>

https://beeflambnz.com/wintergrazing/pre-grazing

Take action to reduce potential losses of sediment, nutrients and E. coli to waterways during wetter months

Functions of riparian buffers

10

5

15

20

Click here to learn more about the role riparian setback distances

25

30

Livestock damage Fish habitat Bank stability Flood control Shade Leaf input Filtration Wood input Nutrient uptake Wildlife habitat

Diagram from conference paper by J Quinn (2012)

Riparian management - results from New Zealand

Riparian management schemes assessed, showing measures of water quality and stream health recorded as better (+), worse (-), or no change (=) in the buffer compared to the control reach for each variable.

				Difference in buffer relative to pasture control reach							
Site	Time since planting (yr)	Planted length (m)	Average buffer width (m)	Phosphorus (over 10% change in dissolved P)	Nitrogen (over 10% change in dissolved N)	Faecal inputs (over 10% change in <i>E. coli</i>)	Visual clarity (over 10% change)	Mean temp- perature (more than 1 deg change)	Stability (change in Pfankuch class)**	Invertebrates (change in QMCI class)***	
Raglan	2	200	12.7	+	+	-	=	=	+	=	
Matarawa	3	300	3.5	-	=	+	+	=	+	-	
Little Waipa	4	660	10.6	+	=	+	+	-	=	=	
Waitetuna	6	1600	7.2	=	-	nd	-	=	=	=	
Mangawara	8	200	15.5	=	=	=	=	nd	=	+	
Tapapakang	a 10	2000	11.4	+	+	+	+	-	=	-	
Kakahu*	20	3600	21	+	+	nd	+	+	=	+	
Waitomo	20	100	18.8	=	=	-	-	=	=	=	
Taupo*	24	4200	75	+	-	nd	+	+	+	+	

<u>Click here to view source publication</u>

What can we do to improve catchment health?

- Retire & plant marginal land
- Exclude stock from streams, wetlands & boggy areas
- Plant retired riparian margins
- Manage nutrients & effluent conservatively
- Identify and address CSAs

