

Awakino & Tasman Freshwater Monitoring Results Merrin Whatley (PhD) – 25 July 2022



- Te mana o te wai
- Indicators of freshwater health
- Monitoring results
- On farm actions



# Te Mana o te wai

RCs Must Give Effect to Te Mana o te Wai by applying the hierarchy of obligations that prioritise:

- the health and well-being of water bodies and freshwater ecosystems
- the health needs of people (such as drinking water)
- the ability of people and communities to provide for their social, economic, and cultural well-being, now and in the future.

### Set Target Attribute States

- Must be set at or above the baseline state of that attribute (except the value human contact/E.coli).
- The target attribute state for E.coli must be set above the baseline state, unless the baseline state is already within the A band.
- The target state must be set at or above the national bottom line.
- Must specify a timeframe for achieving the target.

https://www.waikatoregion.govt.nz/council/policy-and-plans/freshwater-policy-review/



# Indicators of Freshwater Health



Flow



Wildlife

Habitat



Energy & Nutrient Dynamics



Water Quality

Drivers of Health/Mauri of our Waterways



Key contaminants, attributes/indicators?



Where in the catchment are they coming from?



Are there seasonal changes or changes over time?



What are the underlying processes or practices contributing to contaminant loss?



Tailor catchment-based interventions to target key contaminants over time and space.

# Natural Influences

Climate Topography Geology Soils Hydrology Land cover







#### Map Information

#### Strong Bedrock

#### Variants

Overland flow N Artificial drainage N Natural soil bypass N

#### Not applicable Not applicable

×

#### Key Information

Hydrological pathway Lateral drainage Contaminant risk Sediment, Particulate phosphorus Surface water catchment Awakino River

#### Description

- Typically occurs across rolling to steep topography where shallow soil overlies strong bedrock (also exists across plateaus where shallow soils overlie bedrock without significant relief).
- · Soils are shallow and typically well drained.
- · Minor aquifer contribution if rock is fractured.
- Elevated precipitation relative to lowland environments.
- Rainfall moves laterally through the thin soils or as overland flow when soils are saturated or infiltration is limited.
- The environment is weakly to moderately reducing.
- Moderate dilution potential for downstream environments as land use tends to be less intensive than lowland environments.
- Lower erosion risk relative to the Weak Bedrock Environment.
- As overland flow is a key contaminant

Geographix | Land and Water Science

3 km

# Attribute Descriptions



Water Clarity – Suspended Particles Including Sediment



Nitrate

Dissolved Reactive Phosphorus (DRP)

Pathogens/E. coli (short for Escherichia coli)



Freshwater Macroinvertebrate Community Index (MCI)

## Water Clarity / Suspended Sediment

- The estimated national average annual erosion rate in NZ is 720 tonnes per square kilometer.
- As of 2015, soil erosion processes were attributed to cost \$250 to \$300 million annually.
- Erosion releases tiny particles of clay, silt or small organic particles which are washed into waterways.
- Sediment can harm aquatic life by clogging their gills which reduces their ability to take up oxygen.
- As fine particles settle, the spaces between rocks and gravel are filled making the habitat unsuitable for aquatic species.

https://ourenvironment.ac.nz/2020/04/25/soil-erosionin-new-zealand/



## Nitrate

 Nitrate is a highly soluble form of nitrogen that is both a nutrient and, in excess quantities, a toxic substance.

#### Between 1990 and 2017:

- The total amount of nitrate leached from NZ livestock increased from 189,000 tonnes to 199,000 tonnes pa.
- Sheep contribution to national nitrate leaching decreased from 34% to15%.
- Beef cattle contribution decreased from 26% to 19%.
- Dairy cattle contribution increased from 39% to 65%.
- Last month Ballance notified farmers that some fertiliser products would increase in price between 7% and 25%.

https://www.stats.govt.nz/indicators/nitrate-leachingfrom-livestock



# DRP

Phosphorus occurs naturally in rocks and minerals and can be a common component in soils and sediments.

Weathering of rocks and minerals also releases phosphorus in bio-available forms as DRP, suitable for uptake by plants.

Phosphorus binds strongly to soil particles, but once the storage capacity of the soil is exceeded, it will leach into groundwater.

Very high phosphorus concentrations in waterways are likely to cause rapid weed growth or algal blooms which can choke aquatic life and cause long-term damage to the health of a waterbody.



# E. coli/Pathogens

E. coli (short for Escherichia coli) is a type of bacteria commonly found in the guts of warm-blooded mammals (including people) and birds.

E. coli can survive for up to four to six weeks outside the body in fresh water, making it a useful indicator of faecal contamination and the presence of disease-causing organisms.

Common sources of E. coli bacteria are human wastewater discharges, animal waste, bird droppings and stormwater runoff.

In response to public pressure in 2017 the then National Govt. set a target for 90% of NZ rivers & lakes to be swimmable by 2040.



### Benthic Freshwater Invertebrates (MCI)

Benthic macroinvertebrates are small animals without backbones that live on or just below the stream-bed.

Macro-invertebrates, means they can be seen with the naked eye.

They play a central role in stream ecosystems by feeding on periphyton, macrophytes, dead leaves and wood, or on each other.

MCI stands for Macroinvertebrate Community Index which is used as an indicator of stream ecological health.

Higher MCI scores indicate better stream conditions.

https://www.lawa.org.nz/learn/factsheets/benthicmacroinvertebrates/





### Attribute Band - Current State

# Attribute Dials

# Monitoring in Awakino & Tasman

Waikato Regional Council Sites

- Awakino River 10 sites in total
  - 3 River Water Quality Sites
  - 6 Ecological Monitoring Sites
  - 1 River flow Site
- Tasman 4 Ecology sites

Frequency of Measurements

- WQ collected by monthly grab sample
- Ecology site visited every 3 years
- Continuous river flow recorded every 15 minutes

# Monitoring in Awakino & Tasman

**KCRC** Sites

- Awakino River 7 sites in total
- 2 Water Quality sites
- 1 eDNA sites
- 7 SHMAK sites
- Tasman 1 site Water Quality + Ecology/SHMAK

Frequency of Measurements

- Water quality collected by grab sample 4 times a year
- eDNA collected twice, 22 Feb & 29 Nov 2021







|                                               |                 | Ecosystem Health         |                 |                 |                          |                |                                 |                                        |                            |  |  |  |  |
|-----------------------------------------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|----------------|---------------------------------|----------------------------------------|----------------------------|--|--|--|--|
| AWAKINO RIVER AND TASMAN                      | Human Contact   | Water Quality            |                 |                 |                          |                |                                 |                                        |                            |  |  |  |  |
|                                               |                 |                          |                 |                 |                          |                |                                 | Sediment                               |                            |  |  |  |  |
| Annual Summary 2021<br>Labs: Hill/Analytica   | E. coli/100 ml  | Nitrate Toxicity (TON mg |                 | Ammor           | nia Toxicity (mg<br>N/L) |                | lved Reactive<br>horus (mg P/L) | Water<br>Clarity<br>Value <sup>1</sup> | National<br>Bottom<br>Line |  |  |  |  |
| KCRC WQ SITES                                 | 95th Percentile | Median                   | 95th Percentile | Median          | 95th Percentile          | Median         | 95th Percentile                 | Me                                     | edian                      |  |  |  |  |
| 1-Waikawau R.                                 | 161 🗸           | 0.07 🗸                   | 0.10 🗸          | 0.003 🗸         | 0.008 🗸                  | 0.016 个        | 0.019 个                         | 1.76 个                                 | 0.61                       |  |  |  |  |
| 2-Manganui R.                                 | 159 🗸           | 0.12 🗸                   | 0.17 🗸          | 0.003 🗸         | 0.003 🗸                  | 0.013 个        | 0.015 🗸                         | 1.70 个                                 | 0.61                       |  |  |  |  |
| 3-Mangaorango Stm                             | 207 🗸           | 0.51 个                   | 0.68 <b>个</b>   | 0.004 🗸         | 0.010 🗸                  | 0.011 →        | 0.014 🗸                         | 1.38 🗸                                 | 0.61                       |  |  |  |  |
| WRC WQ SITES                                  |                 |                          |                 |                 |                          |                |                                 |                                        |                            |  |  |  |  |
| Gribbon Road                                  | 1365 🗸          | 0.07 🗸                   | 0.13 🗸          | < 0.01 <b>→</b> | < 0.01 <b>→</b>          | 0.011 <b>→</b> | 0.013 🗸                         | 2.56 <b>个</b>                          | 2.22                       |  |  |  |  |
| SH3 Awakau Road Junction                      | 4320 个          | 0.20 个                   | 0.36 🗸          | < 0.01 →        | 0.0136 🗸                 | 0.008 🗸        | 0.011 🗸                         | 0.92 🗸                                 | 0.61                       |  |  |  |  |
| Manganui Road                                 | 3425 个          | 0.09 🗸                   | 0.23 ↓          | <0.01 →         | <0.01 →                  | 0.011 →        | 0.014 ↓                         | 1.13 ↓                                 | 0.61                       |  |  |  |  |
| Awakino R. Baseline<br>(Jan-2015 to Aug-2020) | 2070            | 0.13                     | 0.40            | 0.009           | 0.016                    | 0.011          | 0.018                           | 1.54                                   | 0.61                       |  |  |  |  |

### **Annual Summary**

### Attribute Band - Current State





E. Coli – Seasonal Results



DRP – Seasonal Results



### Key Results

- E. coli and DRP are the attributes to watch
- E. coli is elevated lower in the catchment
- DRP is elevated at all sites
- Water clarity is lower at Gribbon Rd
- In general WQ is highest at 1. Waikawau R. and 2. Manganui R.
- WQ is lowest at Gribbon Rd.

# **Environmental DNA (eDNA)**





### WILDERLAB





# eDNA site Awakino River @ Gribbon Rd





# Freshwater Fish Species Threat status







Adaptive Environmental Consulting

## Sensitive taxa (values of 8 or more)











Double gill mayfly (*Tepakia*) Mayfles Green stonefly (Stenoperla) Stoneflies

### Tolerant taxa (values of 3 or less)

Spiral cased caddis (Helicopsyche) Cased caddisfiles Swimming mayfly (*Nesameletus*) Mayflies Stonefly (Zelandoperla) Stoneflies

FACTSHEET









Macroinvertebrate Community Index Scores (MCI) 1 - 10

Oligochaete worms (Oligochaeta)

Segmented worms

Snail (Physa) Snalls

FACTSHEET

Chironomid midge (Chironomus) Midges Rat tail maggots (Syrphidae) Other true files

#### 29 Nov 2021 – All Invertebrates



|                | KC4           | KC11       | KC12        | KC14         | КС20      | KC25    | KC26  | KC27       | KC28 |
|----------------|---------------|------------|-------------|--------------|-----------|---------|-------|------------|------|
| Sites          | Mangokewa Stm | Mangaotaki | Mangakowhai | Mangapehi R. | Mapiu Stm | Awakino | Mokau | 3 way KC28 |      |
|                | Viaduct       | R.         | Stm-344     | HWY 4        | HWY 4     | R.      | R.    | Motors     | KC20 |
| MCI Score      | 119           | 126        | 109         | 112          | 112       | 127     | 105   | 101        | 121  |
| National Grade | В             | В          | С           | В            | В         | В       | С     | С          | В    |

Freshwater Invertebrate Community Health Index (MCI) eDNA Results 2021

### Awakino River Site Characteristics

#### **Riparian vegetation**

 Mixture of native, gorse and exotic grasses

### Stock Access

Goats & deer on unfenced, northern side

#### Water temperature

► Feb = 18.6 °C

### **Conductivity (µS/cm)** Feb = 103





#### Mammals - Awakino River @ Gribbon Rd



# Mammalian eDNA Signal Strength



Ecological Monitoring using SHMAK John Margetts

7 sites

- 5 sites in the Awakino R. catchment
- 2 sites in the Manganui R. catchment
- Monitoring Started in 2018
- 3 x per year

### Example SHMAK Graph Awakino

|                    | 10 | Graph o     | of ov | erall | stre | am  | heal | th fo | or sto | ony : | strea | ims | Æ    |        |                 |     |
|--------------------|----|-------------|-------|-------|------|-----|------|-------|--------|-------|-------|-----|------|--------|-----------------|-----|
|                    | 9  | _           |       |       |      |     |      |       |        |       | Á     | Â   | Exc  | ellei  | nt <sup>C</sup> | )   |
|                    | 8  |             |       |       |      |     |      |       | Ś      |       |       |     | C    |        |                 |     |
| core               | 7  |             |       |       |      |     |      |       |        |       | God   | Ŵ   | very | Goo    | ď               |     |
| ate s              | 6  |             |       |       |      | ,   |      |       |        |       | Q     | Ode | rate |        |                 |     |
| Invertebrate score | 5  | -           |       |       | \$   |     |      |       |        |       |       |     |      |        |                 |     |
| lnv                | 4  |             |       |       |      |     |      |       |        |       |       |     |      |        |                 |     |
|                    | 3  |             |       |       |      |     |      | /ery  | Poc    | u     |       |     | P    | oor    |                 |     |
|                    | 2  |             |       |       |      |     |      |       |        |       |       |     |      |        |                 |     |
|                    | 1  |             |       |       |      | *** |      |       | ***    | ***   |       |     |      |        |                 |     |
|                    | -  | 50 -40<br>• |       |       | -10  | 0   | 10   | 20    |        | +4    |       | + 4 | 70   | 80     | 89              | 100 |
|                    |    |             | - 8   | Poor  |      |     |      | N     | loder  | ate   | Good  | 1   | Ve   | ery Go | bod             |     |

#### Habitat score

| No. | File                    | Habitat | Invertebrate | Periphyton |
|-----|-------------------------|---------|--------------|------------|
| 1   | A Leitch 9 10 20        | 91.5    | 9.06         | 8.5        |
| 2   | B Gribbon 10 10 20      | 71.4    | 7.64         | 7.         |
| 3   | C Nursery 10 10 20      | 61.4    | 6.43         | 7.         |
| 4   | D Papakauri 10 10<br>20 | 52.1    | 6.05         | 10.        |
| 5   | E Awakau 10 10 20       | 49.2    | 5.96         | 10.        |

Invertebrate Trends Awakino River



Inverebrate Trends Manganui River


Summary Points -Awakino & Tasman

### Summary of 2021 KCRC Water Quality

- E. coli and Phosphorus (DRP) are the key attributes to investigate
- Water clarity is lowest at Gribbon Rd
- Phosphorus may be naturally elevated in the catchments
- In general, WQ is highest at 1. Waikawau R. (Tasman) and 2. Manganui R.
- ► WQ is lowest at Gribbon Rd.

### Water Quality Baseline 2015-20

- E.coli, DRP and Sediment were elevated in Awakino River
- No data available for Tasman

### eDNA

- Good native fish community, no invasive exotic species recorded
- MCI is 127 = B Grade @ Gribbon Rd

## How Farm Management Influences Catchment Health



### **Management** Actions

 $\mathbf{V}$ 

https://www.farmmenus.org.nz/drystock-farms/

| Impact | Ν      | P, Sed, E. coli |
|--------|--------|-----------------|
| High   | >25%   | >50%            |
| Medium | 10-25% | 20-50%          |
| Low    | <10%   | <20%            |

| Actions - Drystock Farms                       | Greatest Potential<br>Reduction/WQ Benefit |         |        |        |  |  |
|------------------------------------------------|--------------------------------------------|---------|--------|--------|--|--|
|                                                | Sediment                                   | E. coli | Ν      | Р      |  |  |
| Nutrient Management                            | 20-50%                                     | -       | 10-25% | >50%   |  |  |
| Stock Management                               | >50%                                       | 20-50%  | 10-25% | >50%   |  |  |
| - To improve herd fertility and finishing rate | -                                          | -       | 10-25% | <20%   |  |  |
| - To reduce erosion & soil damage              | >50%                                       | 20-50%  | <10%   | >50%   |  |  |
| Planting to Reduce Erosion                     | >50%                                       | 20-50%  | 10-25% | 20-50% |  |  |
| Managing Critical Source Areas                 | >50%                                       | >50%    | <10%   | >50%   |  |  |
| Riparian Management                            | >50%                                       | >50%    | 10-25% | >50%   |  |  |
| - Sediment Traps                               | >50%                                       | <20%    | <10%   | >50%   |  |  |
| - Provide deer wallows away from waterways     | >50%                                       | >50%    | <10%   | 20-50% |  |  |
| Management of Fodder Crop Areas                | >50%                                       | 20-50%  | >25%   | >50%   |  |  |
| FEP - Good farmer buy-in                       | >50%                                       | >50%    | >25%   | >50%   |  |  |
| FEP - Poor buy-in                              | <20%                                       | <20%    | <10%   | <20%   |  |  |

### **Management** Actions

https://www.farmmenus.org.nz/dairy-farms/

| Impact | Ν      | P, Sed, E. coli |
|--------|--------|-----------------|
| High   | >25%   | >50%            |
| Medium | 10-25% | 20-50%          |
| Low    | <10%   | <20%            |

| Actions - Dairy Farms                        |          | Greatest Potential<br>Reduction/WQ Benefit |        |        |  |  |
|----------------------------------------------|----------|--------------------------------------------|--------|--------|--|--|
|                                              | Sediment | E. coli                                    | Ν      | Р      |  |  |
| Nutrient Management                          | -        | -                                          | 10-25% | 20-50% |  |  |
| Riparian Management                          | >50%     | >50%                                       | 10-25% | 20-50% |  |  |
| - Sediment Traps                             | 20-50%   | <20%                                       | <10%   | 20-50% |  |  |
| - Constructed wetlands                       | 20-50%   | 20-50%                                     | 10-25% | 20-50% |  |  |
| Effluent management                          | 20-50%   | >50%                                       | 10-25% | >50%   |  |  |
| Feed pads - Off Pasture Options              | >50%     | >50%                                       | >25%   | >50%   |  |  |
| Good Grazing Management - On Pasture Options | 20-50%   | 20-50%                                     | <10%   | 20-50% |  |  |
| Managing Critical Source Areas               | >50%     | >50%                                       | >25%   | >50%   |  |  |
| Cropping Management                          | >50%     | 20-50%                                     | >25%   | >50%   |  |  |
| FEP - Good farmer buy-in                     | >50%     | >50%                                       | >25%   | >50%   |  |  |
| FEP - Poor buy-in                            | <20%     | <20%                                       | <10%   | <20%   |  |  |



# Menus

Menu of practices to improve water quality: dairy farms

Menu of practices to improve water quality: drystock farms

Menu of practices to improve water quality: cropping land

These menus provide a range of practices targeting cropping land, dairy and drystock farms to improve nutrient management and reduce impacts on water quality. <u>About these menus</u>



https://www.farmmenus.org.nz/

#### Ivienus nome



Click on the arrows on the variables in the header row to reorder the farm practices based on that variable. Use this menu in conjunction with your consultant or your Land Environment Plan.

| Management area                 | On farm<br>practic <del>e</del>                                                                                          | ¢<br>N | ¢<br>P | ¢<br>Sed | ¢<br>Pa | ≎<br>Cost        | ¢<br>Benefit | Factors to consider                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|---------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cropping management             | Actively manage<br>grazing of winter crop<br>areas to reduce risk of<br>N leaching, run off, soil<br>loss and compaction | C      | M      | M        | M       | \$\$             | \$\$\$       | Graze from top to bottom of paddock contour. Avoid leaving<br>stock on during wet periods, for long periods, or concentrated<br>on small sections of the crop.                                                                                                                                                                                    |
| Planting to reduce<br>erosion 👔 | Afforestation of steep<br>southern faces (above<br>Land Use Capability 6e)                                               | M      | M      | M        | -       | \$\$ -<br>\$\$\$ | \$ - \$\$    | Protects areas of greatest erosion risk and replaces low growing<br>slopes with long term productive investment. Best suited to<br>areas with large weed burdens and minimal profitability.<br>Profitability depends on forestry regime and market. Any<br>afforestation plan should include a harvest plan to ensure all<br>land is harvestable. |

### Soil Damage - Pugging



Source: Keith Betteridge, AgResearch

Source: Keith Betteridge, AgResearch

#### Overgrazing & soil damage

- Reduces spring pasture production by up to 80%
- Can take 3 or more years to recover.

<u>Click here to find out more about soil erosion processes in New Zealand</u> <u>Click here to find out more about soil and pasture management</u> <u>Click here to learn about 11 ways to reduce pugging in your pasture</u>



https://beeflambnz.com/wintergrazing/pre-grazing

Take action to reduce potential losses of sediment, nutrients and E. coli to waterways during wetter months

### Functions of riparian buffers

10

5

15

20

Click here to learn more about the role riparian setback distances

25

30

Livestock damage Fish habitat Bank stability Flood control Shade Leaf input Filtration Wood input Nutrient uptake Wildlife habitat

Diagram from conference paper by J Quinn (2012)

### **Riparian management - results from New Zealand**

Riparian management schemes assessed, showing measures of water quality and stream health recorded as better (+), worse (-), or no change (=) in the buffer compared to the control reach for each variable.

|              |                                |                          |                                | Difference in buffer relative to pasture control reach |                                                    |                                                             |                                        |                                                       |                                                 |                                                  |  |
|--------------|--------------------------------|--------------------------|--------------------------------|--------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--|
| Site         | Time since<br>planting<br>(yr) | Planted<br>length<br>(m) | Average<br>buffer<br>width (m) | Phosphorus<br>(over 10%<br>change in<br>dissolved P)   | Nitrogen<br>(over 10%<br>change in<br>dissolved N) | Faecal inputs<br>(over 10%<br>change in<br><i>E. coli</i> ) | Visual clarity<br>(over 10%<br>change) | Mean temp-<br>perature (more<br>than 1 deg<br>change) | Stability<br>(change in<br>Pfankuch<br>class)** | Invertebrates<br>(change in<br>QMCI<br>class)*** |  |
| Raglan       | 2                              | 200                      | 12.7                           | +                                                      | +                                                  | -                                                           | =                                      | =                                                     | +                                               | =                                                |  |
| Matarawa     | 3                              | 300                      | 3.5                            | -                                                      | =                                                  | +                                                           | +                                      | =                                                     | +                                               | -                                                |  |
| Little Waipa | 4                              | 660                      | 10.6                           | +                                                      | =                                                  | +                                                           | +                                      | -                                                     | =                                               | =                                                |  |
| Waitetuna    | 6                              | 1600                     | 7.2                            | =                                                      | -                                                  | nd                                                          | -                                      | =                                                     | =                                               | =                                                |  |
| Mangawara    | 8                              | 200                      | 15.5                           | =                                                      | =                                                  | =                                                           | =                                      | nd                                                    | =                                               | +                                                |  |
| Tapapakang   | a 10                           | 2000                     | 11.4                           | +                                                      | +                                                  | +                                                           | +                                      | -                                                     | =                                               | -                                                |  |
| Kakahu*      | 20                             | 3600                     | 21                             | +                                                      | +                                                  | nd                                                          | +                                      | +                                                     | =                                               | +                                                |  |
| Waitomo      | 20                             | 100                      | 18.8                           | =                                                      | =                                                  | -                                                           | -                                      | =                                                     | =                                               | =                                                |  |
| Taupo*       | 24                             | 4200                     | 75                             | +                                                      | -                                                  | nd                                                          | +                                      | +                                                     | +                                               | +                                                |  |

<u>Click here to view source publication</u>

# What can we do to improve catchment health?

- Retire & plant marginal land
- Exclude stock from streams, wetlands & boggy areas
- Plant retired riparian margins
- Manage nutrients & effluent conservatively
- Identify and address CSAs



